Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B D D
Theo bài ra ta có:\(\widehat{ACB}+\widehat{DCB}=180^o\)(hai góc bù nhau)
\(\widehat{ACB}+\widehat{ACD}=180^o\)(hai góc bù nhau)
=> \(\widehat{ACB}+\widehat{DCB}=\widehat{ACB}+\widehat{ACD}\)
=> \(\widehat{DCB}=\widehat{ACD}\)
trong tam giac ABC co I la giao diem cua 2 duong cao AD va CE nen I la truc tam cua tam giac ABC ma BI di qua I nen BI vuong goc voi AC
O A B x y x' y'
góc AOy + góc OAy' = 180 độ (xy//x'y') (1)
góc AOB = góc AOy : 2 (OB là tia phân giác của góc AOy) (2)
góc OAB = góc OAy' : 2 (AB là tia phân giác của góc OAy') (3)
Từ (1); (2); (3) => góc AOB + góc OAB = (góc AOy + góc OAy') : 2 = 180 độ : 2 = 90 độ
=> tam giác OAB vuông tại B (DHNB)
=> OB vuông góc với AB (t/c)
a b A B C 1 2 1 2 c
a // b
c x a = A
c x b = B
\(\begin{cases}\widehat{A_1}=\widehat{A_2}=\frac{1}{2}.\widehat{A}\\\widehat{B_1}=\widehat{B_2}=\frac{1}{2}.\widehat{B}\end{cases}\)
Mặt khác
\(\widehat{A}+\widehat{B}=180^0\)
=> \(\widehat{A_1}+\widehat{B_1}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)
=> \(\widehat{A_1}+\widehat{B_1}=\frac{\widehat{A}+\widehat{B}}{2}\)
=> \(\widehat{A_1}+\widehat{B_1}=\frac{180^0}{2}=90^0\)
Xét \(\Delta ABC\) có :
\(\widehat{A_1}+\widehat{B_1}+\widehat{C}=180^0\)
=> \(90^0+\widehat{C}=180^0\)
=> \(\widehat{C}=90^0\) ( đpcm )