K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

Bài 2:

kẻ hình thang ABCD

 
 

kẻ 2 đường cao AH và BK nối B với H

xét tam giác ABH và tam giác KBH

có ^ABH = ^KBH ( 2gocs so le trong )

HB chung

=> tam giác ABH = tam giác KBH (cạnh huyền +góc nhọn )

=> AB =HK ( 2 cạnh tương ứng )

xét tam giác BKC có BC>KC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )(1)

xét tam giác AHD có AD>HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)(2)

từ (1) và (2) => BC+AD >KC+HD

ta lại có DH+DK +HK =DC

mà AB=HK (C/m )

=> DH+DK+AB =dc

ta có DC-AB = DH+DK+AB-AB= DH+DK

mà DH+DK<BC+AD(c/m)

=>DC -AB< BC+AD

vậy tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy

29 tháng 6 2017

Hình thang

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:
a. $BAC$ là tam giác vuông cân tại $A$

$\Rightarrow \widehat{BCA}=45^0$

$ACE$ là tam giác vuông cân tại $E$

$\Rightarrow \widehat{EAC}=45^0$

Do đó: $\widehat{BCA}=\widehat{EAC}$. Mà 2 góc này ở vị trí so le trong nên $AE\parallel BC$. Mà $\widehat{E}=90^0$ nên $AECB$ là hình thang vuông.

-----------------

Tính góc:

Hình thang vuông $AECB$ có $\widehat{E}=90^0$ đương nhiên $\widehat{C}=180^0-\widehat{E}=90^0$

$\widehat{ABC}=45^0$ (do $ABC$ vuông cân tại $A$)

$\widehat{BAE}=\widehhat{BAC}+\widehat{EAC}=90^0+45^0=135^0$

Tính cạnh:

Vì $ABC$ vuông cân tại $A$ nên $AB=AC$

Áp dụng định lý Pitago:

$AB^2+AC^2=BC^2=4$

$AB^2+AB^2=4$

$2AB^2=4\Rightarrow AB=\sqrt{2}$ (cm) 

$\Rightarrow AC=\sqrt{2}$ (cm)

Áp dụng định lý Pitago cho tam giác $ACE$ vuông cân tại $E$:

$AE^2+EC^2=AC^2=2$

$2AE^2=2\Rightarrow AE=1$ (cm)

$EC=AE=1$ (cm)

 

Vậy.........

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Hình vẽ:

16 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tam giác ABC vuông cân tại A

⇒ ∠ (ACB) = 45 0

Tam giác EAC vuông cân tại E

⇒  ∠ (EAC) =  45 0

Suy ra:  ∠ (ACB) =  ∠ (EAC)

⇒ AE // BC (vì có cặp góc ở vị trí so le trong bằng nhau)

nên tứ giác AECB là hình thang có  ∠ E =  90 0 . Vậy AECB là hình thang vuông

26 tháng 1 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

∠ E =  ∠ (ECB) = 90 0 ,  ∠ B =  45 0

∠ B +  ∠ (EAB) =  180 0  (hai góc trong cùng phía bù nhau)

⇒  ∠ (EAB) =  180 0  -  ∠ B =  180 0  –  45 0  =  135 0

Tam giác ABC vuông tại A. Theo định lí Py-ta-go ta có:

A B 2 + A C 2 = B C 2  mà AB = AC (gt)

⇒ 2 A B 2 = B C 2 = 2 2 = 4

A B 2  = 2 ⇒ AB= √2(cm) ⇒ AC = √2 (cm)

Tam giác AEC vuông tại E. Theo định lí Py-ta-go ta có:

E A 2 + E C 2 = A C 2 , mà EA = EC (gt)

⇒  2 E A 2 = A C 2  = 2

E A 2  = 1

⇒ EA = 1(cm) ⇒ EC = 1(cm)

9 tháng 6 2016

Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
\(\frac{AX}{YC}\)=\(\frac{AO}{OC}\)=\(\frac{AB}{DC}\)=\(\frac{AX}{DY}\)
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
\(\frac{AX}{DY}\)=\(\frac{SX}{XY}\)=\(\frac{XB}{YC}\)
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
Ta cũng dễ dàng chứng mình được đường thẳng chứa 4 điểm đó là trùng trực của hai cạnh đấy sao khi chừng minh chúng thẳng hàng ở trên nhé!

27 tháng 12 2017

Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
AXYCAXYC=AOOCAOOC=ABDCABDC=AXDYAXDY
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
AXDYAXDY=SXXYSXXY=XBYCXBYC
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm