Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha.
a)
+ Xét\(\Delta\)ABC có M là trung điểm của BC
E là trung điểm của AC
=> ME là đường trung bình của\(\Delta\)ABC
=> ME // AB
Cmtt: DM // AC
+ Xét tứ giác ADME có ME // AD (do ME // AB, D thuộc AB)
DM // AE (do DM // AC, E thuộc AC)
=> ADME là hình bình hành (dhnb)
Vậy ADME là hình bình hành.
b)
Có ADME là hình bình hành
Để tứ giác ADME là hình chữ nhật
<=>\(\widehat{DAE}=90^0\)
<=>\(\widehat{BAC}=90^0\)
<=>\(\Delta\)ABC vuông tại A
Vậy để ADME là hình chữ nhật thì \(\Delta\)ABC vuông tại A.
a) Tứ giác ADME có:
⇒ ADME là hình chữ nhật
O là trung điiểm của đường chéo DE nên O cũng là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng.
b) Kẻ AH ⊥ BC; OK ⊥ BC.
Ta có OA = OM, OK // AH (cùng vuông góc BC)
⇒ MK = KH
⇒ OK là đường trung bình của ΔMAH
⇒ OK = AH/2.
⇒ điểm O cách BC một khoảng cố định bằng AH/2
⇒ O nằm trên đường thẳng song song với BC.
Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB.
Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
c) Vì AH là đường cao hạ từ A đến BC nên AM ≥ AH (trong tam giác vuông thì cạnh huyền là cạnh lớn nhất).
Vậy AM nhỏ nhất khi M trùng H.