Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_1/a_2 = ... = a_9/a_1 = (a_1+...+a_9)/(a_2+...+a_9 +a_1) =1\)
\(\frac{a1}{a2}=\frac{a2}{a3}=.........=\frac{a8}{a9}=\frac{a9}{a1}=\frac{a1+a2+...+a8+a9}{a2+a3+.......+a9+a1}=1\)
=> a1 =a2
=>a2=a3
...............
=> a9 =a1
Vậy a1=a2=......=a9
( viết a1 =a1) nhanh
Áp dụng dãy tỉ số bằng nhau ta có :"
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+..+1}\)
\(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+3+..+9\right)}{1+2+3+..+9}=\frac{90-45}{45}=1\)
=> a1 - 1 = 9 => a1 = 10
=> a2 - 2 = 8 => a2 = 10
...............................
=>a9 - 1 = 9 => a9 = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}\)
\(=\frac{90-45}{45}=1\)
+) \(\frac{a_1-1}{9}=1\)=> \(a_1=9+1\)=> \(a_1=10\)
\(\frac{a_2-2}{8}=1\)=> \(a_2=1\cdot8+2\)=> \(a_2=8+2=10\)
....
\(\frac{a_9-9}{1}=1\)=> \(a_9=1\cdot1+9\)=> \(a_9=10\)
Vậy \(a_1=a_2=a_3=...=a_9=10\)
Nhớ ghi tiêu đề nhé -.-
Bài 1:
Ta có: \(\frac{a}{b}=\frac{b}{d}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+d^2}\) (1).
Lại có:
\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\left(đpcm\right).\)
Chúc bạn học tốt!