Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (Em à bài này phải là
A=20+21+22+23+24+.....+22011 mới đúng )
Nếu thế ta giải như sau:
- Có A=20+21+22+23+24+.....+22011
Nên 2A = 2 (20+21+22+23+24+.....+22011 )
= 21+22+23+24+.....+22011 + 22012
=>A = 2A - A = 22012 - 20
= 22012 - 1
Vì 22012 = 22.1006 =(22)1006 chia 3 dư 1 (vì 22 chia 3 dư 1)
Nên A = 22012 - 1 chia hết cho 3
- Lại có A=20+21+22+23+24+.....+22011
=(20+21+22)+(23+24+ 25) + ( 26 +....+22008) + (22009 + 22010 +22011 )
= (20+21+22)+23.(20+21+22) + ....+ 22009.(20+21+22)
=7+23 . 7 + ....+ 22009. 7
=7. (1+23+ +26 +29 + ....+ 22009) chia hết cho 7
Vậy A chia hết cho cả 3 và 7
Bài 2:
Có A=20+21+22+23+24+.....+22010
Nên 2A = 2 (20+21+22+23+24+.....+22010 )
= 21+22+23+24+.....+22011 + 22011
=>A = 2A - A = 22011 - 20
= 22011 - 1
= B
Vậy A = B
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
(1+23)+(2+24)+...+(28+211)
9+2(1+23)+...+28(1+23)
9(1+2+...+28) chia hết cho 9
=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9
c)(5+52)+(53+54)+...+(599+5100)
5(1+5)+53(1+5)+...+599(1+5)
6(5+53+...+599) chia hết cho 3
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
Bài 1:
Đặt M = 1 + 3 + 3^2 + ...+ 3^2011
=> 3M = 3 + 3^2 + 3^3 + ...+ 3^2012
3M - M = 3^2012 - 1
2M = 3^2012 - 1
2M = (3^4).(3^4)...(3^4) -1 ( có 503 thừa số 3^4)
2M = (...1).(...1)...(...1) - 1
2M = (....1) -1
2M = (....0) chia hết cho 10
Bài 2:
ta có: A = 2^0 + 2^1 + 2^2 + ...+ 2^12
=> 2A = 2^1 + 2^2 + 2^3 + ....+ 2^13
=> 2A-A = 2^13 - 1
A = 2^13 - 1
A = 2^13 -1 > B = 2^11