K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

Bài 1 : Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52

= 100a2 + 100a + 25

= 100a(a + 1) + 25.

Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được :

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

- 252 = 625.

- 352 = 1225.

- 652 = 4225

- 752 = 5625.

Bài 2 :

a. 201\(^2\) = ( 200 + 1 )\(^2\) = 200\(^2\) + 2.200.1 + 1\(^2\) = 40401

b. 99\(^2\) = (100 - 1 )\(^2\) = 100\(^2\) - 2.100.1 + 1\(^2\) = 9801

c. 48.52 = ( 50 - 2 )( 50+2 ) = 50\(^2\) - 2\(^2\) = 2496

d. 32\(^2\) + 68\(^2\)+ 68.64 = 32\(^2\) + 2.68.32 + 68\(^2\) = ( 32+68)\(^2\)

= 100\(^2\) = 10000

e. 86\(^2\) + 36\(^2\) - 72.86 = 86\(^2\) - 2.86.72 + 36\(^2\) = (86-36)\(^2\) = 50\(^2\) = 2500

Bài 3 :

a. 2xy\(^2\) + x\(^2\)y\(^4\) + 1 = ( xy\(^2\) + 1 )\(^2\)

b. 16 - 8(x-3y) + (x-3y)\(^2\) = ( 4- x+3y)\(^2\)

c. (x+y-z)\(^2\) + ( y-z )\(^2\) + 2(x+y-z)(y-z) = ( x+y-z+y-z)\(^2\) = ( x+2y-2z)\(^2\)

2:

-8x^6-12x^4y-6x^2y^2-y^3

=-(8x^6+12x^4y+6x^2y^2+y^3)

=-(2x^2+y)^3

3:

=(1/3)^2-(2x-y)^2

=(1/3-2x+y)(1/3+2x-y)

Cảm ơn bạn nhiều! Bạn có thể làm bài 1 không

 

Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá...
Đọc tiếp

Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá trị của biển x a) 9x² - 6x +2 b) x² + x + 1 Bài 7: Tìm GTNN của: a)A=x-3x+5 Bài 8: Tìm GTLNcủa: a) A = 4 - x² + 2x Bài 9: Tính giá trị của biểu thức A = x³+ 12x²+ 48x + 64 tai x = 6 C=x+9x+27x + 27 tại x= - 103 c) 2x² + 2x + 1. b) B = (2x - 1)² + (x + 2)² b) B = 4x - x² B=x −6x + 12x – 8 tại x = 22 D=x³15x² + 75x - 125 tai x = 25 Bài 10.Tìm x biết: a) (x - 3)(x + 3x +9)+x(x + 2)2 - x)=1 b)(x+1)- (x - 1) - 6(x - 1}} = Bài 11: Rút gọn: a) (x - 2) - x(x + 1)(x - 1) + 6x(x - 3) b)(x - 2)(x - 2x+4)(x+2)(x+2x+

1

Bài 8:

Ta có: \(A=-x^2+2x+4\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=1

15 tháng 8 2020

Bài 1 : 

a) \(x^2+y^2\)

\(\Leftrightarrow x^2+2xy+y^2-2xy\)

\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)

b) \(x^3+y^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)

c) \(x^4+y^4\)

\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)

15 tháng 8 2020

Bài 3:

Có:    \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

=>     \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)

=>     \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)

=> TA CÓ ĐPCM.

VẬY      \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

3 tháng 2 2019

Ta có:

(10a + 5)2 = (10a)2 + 2.10a.5 + 52

       = 100a2 + 100a + 25

       = 100a(a + 1) + 25

Đặt A = a.(a + 1). Khi đó ta có:

Giải bài tập Vật lý lớp 10

Do vậy, để tính bình phương của một số tự nhiên có dạng Giải bài tập Vật lý lớp 10 , ta chỉ cần tính tích a.(a + 1) rồi viết 25 vào đằng sau kết quả vừa tìm được.

Áp dụng:

252 = 625 (Vì 2.3 = 6)

352 = 1225 (Vì 3.4 = 12)

652 = 4225 (Vì 6.7 = 42)

752 = 5625 (Vì 7.8 = 56)

9 tháng 8 2016

a) (x+y)2 + (x-y)2 + 2(x+y)(x-y) = (x + y + x - y)2 = (2x)2

b) (x-y+z)2 + (y-z)2 + 2(x-y+z)(y-z) = (x-y+z+y-z)2 = x2

c) (x+y+z)- 2(x+y+z)(x+y) + (x+y)2 = (x+y+z-x-y)2 = z2

13 tháng 8 2016

a, 4x2

b, x2

c, z2

8 tháng 8 2016

a, (x+y)+ (x-y)2 + 2(x+y)(x-y) = \(\left(x+y+x-y\right)^2\)

b, (x-y+z)2 + (y-z)2 + 2(x-y+z)(y-z) \(=\left(x-y+z+y-z\right)^2\)

c, (x+y+z)2 - 2(x+y+z)(x+y) + (x+y)2\(=\left(x+y+z-x-y\right)^2\)

17 tháng 7 2021

`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`

`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`

`=(x/2+y-2z)^3`

Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)

Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)

\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)

\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)