Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)
\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)
\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)
\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)
\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
ĐKXĐ:...
\(VT=\frac{\frac{\cos^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right)}-\frac{\cos^2\left(\frac{3x}{2}\right)}{\sin^2\left(\frac{3x}{2}\right)}}{\cos^2\left(\frac{x}{2}\right).\cos x.\frac{1}{\sin^2\left(\frac{3x}{2}\right)}}\) \(=\frac{\sin^2\left(\frac{3x}{2}\right)}{\sin^2\left(\frac{x}{2}\right).\cos x}-\frac{\cos^2\left(\frac{3x}{2}\right)}{\cos^2\left(\frac{x}{2}\right).\cos x}\)
\(=\frac{\sin^2\left(\frac{3x}{2}\right).\cos^2\left(\frac{x}{2}\right)-\cos^2\left(\frac{3x}{2}\right).\sin^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}\) \(=\frac{\left(\sin\left(\frac{3x}{2}\right).\cos\left(\frac{x}{2}\right)-\cos\left(\frac{3x}{2}\right).\sin\left(\frac{x}{2}\right)\right).\left(\sin\left(\frac{3x}{2}\right).\cos\left(\frac{x}{2}\right)+\cos\left(\frac{3x}{2}\right).\sin\left(\frac{x}{2}\right)\right)}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}\)
\(=\frac{\sin\left(\frac{3x}{2}-\frac{x}{2}\right).\sin\left(\frac{3x}{2}+\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}=\frac{\sin x.\sin2x}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}\)
\(=\frac{2.\sin^2x.\cos x}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}=\frac{8.\sin^2\left(\frac{x}{2}\right).\cos^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right).\cos^2\left(\frac{x}{2}\right)}=8\left(đpcm\right)\)
\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)
\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)
b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)
=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)
d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)
\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)
=\(\frac{1}{cosx.sinx}=VP\)
e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)
c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)
=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)
\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)
Đây nha bạn
\(\frac{sin^2a+1}{2.cos^2a}+\frac{1+cos^2a}{2.sin^2a}+1=\frac{tan^2a}{2}+\frac{1}{2cos^2a}+\frac{cot^2a}{2}+\frac{1}{2sin^2a}+1\)
\(=\frac{1}{2}\left(tan^2a+1+tan^2a+cot^2a+1+cot^2a+2\right)\)
\(=\frac{1}{2}\left(2tan^2a+4+2cot^2a\right)=tan^2a+2+cot^2a=\left(tana+cota\right)^2\)
B.
\(\frac{1-4sin^2a.cos^2a}{4sin^2a.cos^2a}=\frac{\frac{1}{cos^4a}-\frac{4sin^2a}{cos^2a}}{\frac{4sin^2a}{cos^2a}}=\frac{\left(\frac{1}{cos^2a}\right)^2-4tan^2a}{4tan^2a}=\frac{\left(1+tan^2a\right)^2-4tan^2a}{4tan^2a}\)
\(=\frac{tan^4a-2tan^2a+1}{4tan^2a}\)
C.
\(\frac{sina+tana}{tana}=\frac{sina}{tana}+1=1+sina.\frac{cosa}{sina}=1+cosa\)
D.
\(tana+\frac{cosa}{1+sina}=\frac{sina}{cosa}+\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{sina.cosa}{cos^2a}+\frac{cosa-cosa.sina}{cos^2a}\)
\(=\frac{sina.cosa+cosa-sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)
Câu C sai
\(sinx+cosx=\frac{1}{2}\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)
\(\Rightarrow2sinx.cosx=\frac{1}{4}-1=-\frac{3}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)
Vậy ta có:
\(sin^3x+cos^3x=\left(sinx+cosx\right)\left[\left(sinx+cosx\right)^2-3sinx.cosx\right]\)
\(=\frac{1}{2}\left(\frac{1}{4}+\frac{9}{8}\right)=\frac{11}{16}\)
Bài 2: Mục đích của bài này là gì bạn? Ko thấy yêu cầu?
Bài 3:
\(tanx+cotx=2\Rightarrow\left(tanx+cotx\right)^2=4\)
\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=4\Rightarrow tan^2x+cot^2x+2=4\)
\(\Rightarrow tan^2x+cot^2x=2\)
Mẫn Li
Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)
Câu 2b sửa lại thì cm dễ thôi:
\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)
\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)
\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)
\(=cot^2a.cot^2b-1\)
(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))
Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:
\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)
Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!
\(\frac{1-2sin^2x}{1-tanx}=\frac{cosx\left(1-2sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cos^2x-sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cosx+sinx\right)\left(cosx-sinx\right)}{cosx-sinx}\)
\(=cosx\left(cosx+sinx\right)=\frac{cosx\left(cosx+sinx\right)^2}{cosx+sinx}=\frac{cos^2x+sin^2x+2sinx.cosx}{1+\frac{sinx}{cosx}}=\frac{1+sin2x}{1+tanx}\)
\(\frac{x}{2}=a\Rightarrow\frac{cot^2a-cot^23a}{cos^2a.cos2a\left(1+cot^23a\right)}=\frac{sin^23a\left(cot^2a-cot^23a\right)}{cos^2a.cos2a}=\frac{sin^23a.cot^2a-cos^23a}{cos^2a.cos2a}\)
\(=\frac{sin^23a.cos^2a-cos^23a.sin^2a}{sin^2a.cos^2a.cos2a}=\frac{\left(sin3a.cosa-cos3a.sina\right)\left(sin3a.cosa+cos3a.sina\right)}{sin^2a.cos^2a.cos2a}\)
\(=\frac{sin\left(3a-a\right).sin\left(3a+a\right)}{sin^2a.cos^2a.cos2a}=\frac{sin2a.sin4a}{sin^2a.cos^2a.cos2a}=\frac{2sina.cosa.4sina.cosa.cos2a}{sin^2a.cos^2a.cos2a}\)
\(=\frac{8sin^2a.cos^2a.cos2a}{sin^2a.cos^2a.cos2a}=8\)
\(sin\left(a+b+a\right)=5sin\left(a+b-a\right)\)
\(\Leftrightarrow sin\left(a+b\right)cosa+cos\left(a+b\right).sina=5sin\left(a+b\right).cosa-5cos\left(a+b\right).sina\)
\(\Leftrightarrow6cos\left(a+b\right).sina=4sin\left(a+b\right).cosa\)
\(\Leftrightarrow\frac{2sin\left(a+b\right)cosa}{cos\left(a+b\right)sina}=3\Leftrightarrow\frac{2tan\left(a+b\right)}{tana}=3\)