\(1+3+3^2+...+3^{119}\)chia hết cho 13

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Hứa r phải làm thôi:

Đặt:

\(A=1+3+3^2+.....+3^{119}\)

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.....+\left(3^{117}+3^{118}+3^{119}\right)\)

\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+....+3^{117}\left(1+3+3^2\right)\)

\(A=1.13+3^3.13+....+3^{117}.13\)

\(A=\left(1+3^3+....+3^{117}\right).13\)

\(A⋮13\rightarrowđpcm\)

9 tháng 7 2017

Đặt \(A=1+3+3^2+3^3+...+3^{119}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

\(=13+\left(1.3^3+3.3^3+3^2.3^3\right)+...+\left(1.3^{117}+3.3^{117}+3^2.3^{117}\right)\)

\(=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{117}.13\)

\(=13.\left(1+3^3+...+3^{117}\right)⋮13\)

Vậy \(A⋮13\)

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

11 tháng 12 2018

3B=3^1+3^2+3^3+.....+3^119+3^120

3B-B=(3^1+3^2+3^3+.....+3^119+3^120)-(1+3^1+3^2+3^3+.....+3^119)

2B=3^120-1

B=3^120-1/2

\(B=1+3^1+3^2+...+3^{118}+3^{119}\)

\(3B=3+3^2+3^3+..+3^{120}\)

\(3B-B=\left(3+3^2+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)

\(2B=1+3^{120}\)

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

28 tháng 3 2017

M=1+3+3^2+......+3^117+3^118+3^119

M=3^0+3^1+3^2+......+3^117+3^118+3^119

M có số hạng là:

(119-0):1+1=120(số)

Vì 120 chia hết cho 3 nên ta chia dãy số M thành các nhóm,mỗi nhóm có 3 số hạng

Ta có:M=3^0+3^1+3^2+......+3^117+3^118+3^119

M=(3^0+3^1+3^2)+......+(3^117+3^118+3^119)

M=3^0.(1+3+3^2)+.......+3^117.(1+3+3^2)

M=3^0.13+......+3^117.13

M=13.(3^0+.....+3^117)

=>M chia hết cho 13

28 tháng 3 2017

Đầu bài sai rồi bạn ơi vì tất cả các số sau số 1 đều chia hết cho 3 mà 1 chia 3 dư 1 nên M chia 3 dư 1

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

17 tháng 11 2015

b1:

B=3+3^2+...+3^60=(3+3^2+3^3)+...+(3^58+3^59+3^60)=3(1+3+3^2)+...+3^58(1+3+3^2)=3*13+...+3^58*13=13(3+...+3^58) (CHIA HẾT CHO 13)

A=5+5^2+...+5^10=(5+5^2)+(5^3+5^4)+...+(5^9+5^10)=5(1+5)+...+5^9(1+5)=5*6+...+5^9*6=(5+...+5^9)*6(CHIA HẾT CHO 6)

B2: bạn kéo xuống dưới nãy mk thấy có ng làm r

b3: (2x+1)(y-5)=168

Ta có bảng sau: 

2x+112478121421244284168
2x01367111320234183167
x0  3   10    
y-5168  24   8    
y173  29   13    

(mấy ô mk để trống là loại vì x,y là số tự nhiên)

29 tháng 11 2017

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)

13 tháng 3 2019

3^21*(1+3+3^2)+3^24*(1+3+3^2)+3^27*(1+3+3^2)=13*3^21+13*3^24+13*3^27=13*(3^21+3^24+3^27)chia hết cho 13

Giải nghĩa ^:mũ

                *:nhân