K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =-3x^2y*x^2y+3x^2y*2xy

=-3x^4y^2+6x^3y^2

b: =x^3-x^2y+x^2y+y^2=x^3+y^2

c: =x*4x^3-x*5xy+2x*x

=4x^4-5x^2y+2x^2

d: =x^3+x^2y+2x^3+2xy

=3x^3+x^2y+2xy

16 tháng 8 2019

E= \(\frac{x+y}{x-y}\)

=> \(E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\)\(\frac{x^2+y^2+2xy}{x^2+y^2-2xy}\)\(\frac{2x^2+2y^2+4xy}{2x^2+2y^2-4xy}\)

=> E^2 = \(\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}\)= 9

=> E = 3

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

23 tháng 6 2020

Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y

Giải: 

 Cho 2x2+2y2=5xy và 0<x<y. => \(\frac{x}{y}< 1\)

Chia cả hai vế cho y^2 ta có: \(2\left(\frac{x}{y}\right)^2-5\frac{x}{y}+2=0\) (1)

Đặt: t = x/y ta có: 0 < t < 1 

(1) trở thành: \(2t^2-5t+2=0\)

<=> \(\left(2t^2-4t\right)+\left(-t+2\right)=0\)

<=> \(2t\left(t-2\right)-\left(t-2\right)=0\)

<=> \(\left(2t-1\right)\left(t-2\right)=0\)

<=> t = 1/2 ( tm) 

Hoặc  t = 2 loại 

Với t = 1/2 ta có: x/y = 1/2 

<=> y = 2x 

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

Bài làm

a) A = x2 - y2 - 2y - 1 Tại x = 4,5 và y = 94,5

Ta có: A = x2 - y2 - 2y - 1

              = x2 - ( y2 + 2y + 12 )

              = x2 - ( y + 1 )2 

              = ( x + y + 1 )( x - y - 1 )

Thay x = 4,5 và y = 94,5 vào A ta được:

A = ( 4,5 + 94,5 + 1 )( 4,5 - 94,5 - 1 )

A = 100 . ( -91 )

A = -9100

Vậy A = -9100 tại x = 4,5 và y = 94,5

# Học tốt #

2 tháng 4 2018

ai nhanh và đúng được tích

3 tháng 4 2018

không biết

ai dạy tui đâu

tk đi nhé

23 tháng 12 2021

a) \(=\dfrac{x+15}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{x+3}=\dfrac{x+15+2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

b) \(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{y^2+x^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x+y\right)^2-\left(x-y\right)^2+2\left(x^2+y^2\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x^2+y^2+2xy\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)