Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =-3x^2y*x^2y+3x^2y*2xy
=-3x^4y^2+6x^3y^2
b: =x^3-x^2y+x^2y+y^2=x^3+y^2
c: =x*4x^3-x*5xy+2x*x
=4x^4-5x^2y+2x^2
d: =x^3+x^2y+2x^3+2xy
=3x^3+x^2y+2xy
E= \(\frac{x+y}{x-y}\)
=> \(E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\)\(\frac{x^2+y^2+2xy}{x^2+y^2-2xy}\)= \(\frac{2x^2+2y^2+4xy}{2x^2+2y^2-4xy}\)
=> E^2 = \(\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}\)= 9
=> E = 3
Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y
Giải:
Cho 2x2+2y2=5xy và 0<x<y. => \(\frac{x}{y}< 1\)
Chia cả hai vế cho y^2 ta có: \(2\left(\frac{x}{y}\right)^2-5\frac{x}{y}+2=0\) (1)
Đặt: t = x/y ta có: 0 < t < 1
(1) trở thành: \(2t^2-5t+2=0\)
<=> \(\left(2t^2-4t\right)+\left(-t+2\right)=0\)
<=> \(2t\left(t-2\right)-\left(t-2\right)=0\)
<=> \(\left(2t-1\right)\left(t-2\right)=0\)
<=> t = 1/2 ( tm)
Hoặc t = 2 loại
Với t = 1/2 ta có: x/y = 1/2
<=> y = 2x
\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)
Bài làm
a) A = x2 - y2 - 2y - 1 Tại x = 4,5 và y = 94,5
Ta có: A = x2 - y2 - 2y - 1
= x2 - ( y2 + 2y + 12 )
= x2 - ( y + 1 )2
= ( x + y + 1 )( x - y - 1 )
Thay x = 4,5 và y = 94,5 vào A ta được:
A = ( 4,5 + 94,5 + 1 )( 4,5 - 94,5 - 1 )
A = 100 . ( -91 )
A = -9100
Vậy A = -9100 tại x = 4,5 và y = 94,5
# Học tốt #
a) \(=\dfrac{x+15}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{x+3}=\dfrac{x+15+2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
b) \(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{y^2+x^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x+y\right)^2-\left(x-y\right)^2+2\left(x^2+y^2\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x^2+y^2+2xy\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)