Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = (x+y) + |x+y|
- Nếu x+y >= 0 thì A = x+y+x+y = 2(x+y) chia hết cho 2
- Nếu x+y <0 thì A = 0 cũng chia hết cho 2.
b) B = x - y - |x-y|
- Nếu x-y >= 0 thì B = x-y-x+y = 0 chia hết cho 2
- Nếu x-y < 0 thì B = x - y + x - y = 2*(x-y) chia hết cho 2.
c) C = x - y - z + ||x+y| + z|
- Nếu |x+y| + z >= 0 thì C = x - y - z + |x+y| + z = x+y + |x+y| - 2y = A - 2y chia hết cho 2. (A là biểu thức A phần a)
- Nếu |x+y| + z < 0 thì C = x - y - z - |x+y| - z = x+y + |x+y| - 2y - 2z - 2|x+y| = A - 2y -2z - 2|x+y| chia hết cho 2. (A là biểu thức A phần a).
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
a/ \(C=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b/ Ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz\)
Vì \(x+y+z⋮6\)
Nên trong 3 số x, y, z có ít nhất 1 số chẵn
\(\Rightarrow3xyz⋮6\)
\(\Rightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz⋮6\)