Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2.2+3.3-4}=\frac{2x+3y-z-5}{9}=\frac{45}{9}=5=\frac{x-1+y-2+z-3}{2+3+4}=\frac{x+y+z-6}{9}\)
=> x+y+z - 6 =9.5
=>x+y+z =45+6 =51
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=> 6x = 12
=> x = 2
Thay x = 2 ta có:
\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)
=> 3y - 2 = 7
=> 3y = 9
=> y = 3
=> x + y = 2 + 3 = 5
Cho các số x;y;x thỏa mãn: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x+3y-z=95 Khi đó x+y+z=
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
x - 1/2 = y - 2/3 = z-3/4 = 2x - 2 + 3y - 6 - z + 3/4 + 9 - 4 = 95 + -5/10 = 10
x-1/2 = 10 => x =21
y-2/3 =10 => y = 32
z-3/4 = 10 => z = 43
Vậy x + y + z = 21 + 32 + 43 = 96
\(\frac{2x-3y}{x+2y}=\frac{2}{3}=>\left(2x-3y\right).3=\left(x+2y\right).2=>6x-9y=2x+4y=>6x-2x=9y+4y\)
=>4x=13y
hay \(\frac{x}{y}=\frac{13}{4}\)
vậy gtri của tỉ số x/y là 13/4
\(\frac{2x-3y}{x+2y}=\frac{2}{3}\)
=> 3.(2x-3y)=2.(x+2y)
=> 6x-9y=2x+4y
=> 6x-2x=4y+9y
=> 4x=13y
=> \(\frac{y}{x}=\frac{4}{13}\)
\(\frac{2x-3y}{x+2y}=\frac{2}{3}\)
=> 3(2x-3y)=2(x+2y)
=> 6x-9y=2x+4y
=> 4x=13y
=> x/y=13/4
y/x=4/13