Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: AM = \(5:\frac{2}{3}=5.\frac{3}{2}=7,5\)( tính chất của 3 đường trung tuyến)
chúc bạn học tốt~
Ta có : AM = 5 : 2/3 = 5 . 3/2 = 7,5 ( tính chất của 3 đường trung tuyến )
Hok tút ^^
Bài làm
Xét tam giác ABC có:
AM là đường trung tuyến.
Mà G là trọng tâm của tam giác ABC
=> \(\frac{AG}{AM}=\frac{2}{3}\)( tính chất đường trung tuyến trong tam giác )
Mà AG = 5cm
Thay AG = 5cm vào \(\frac{AG}{AM}=\frac{2}{3}\), ta được:
\(\frac{5}{AM}=\frac{2}{3}\)
\(\Rightarrow AM=\frac{5.3}{2}=\frac{15}{2}=7.5\left(cm\right)\)
Vậy AM = 7,5 cm
Bài làm:
a) Ta có: \(\hept{\begin{cases}AB^2+AC^2=9^2+12^2=225\left(cm\right)\\BC^2=15^2=225\left(cm\right)\end{cases}}\)
\(\Rightarrow AB^2+AC^2=BC^2\)
Áp dụng định lý Pytago đảo => Tam giác ABC vuông tại A
=> đpcm
b) Xét 2 tam giác: \(\Delta MHC\)và \(\Delta MKB\)có:
\(\hept{\begin{cases}MK=MH\left(gt\right)\\\widehat{HMC}=\widehat{KMB}\\MB=MC\left(gt\right)\end{cases}}\)(đối đỉnh)
=> \(\Delta MHC=\Delta MKB\left(c.g.c\right)\)
=> đpcm
c) Áp dụng tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông
=> \(AM=\frac{1}{2}BC=MC\)
=> Tam giác AMC cân tại M, mà MH là đường cao xuất phát từ đỉnh trong tam giác cân AMC
=> MH đồng thời là đường trung tuyến của tam giác AMC
=> H là trung điểm AC
=> BH là đường trung tuyến của tam giác ABC
Mà AG,BH là 2 đường trung tuyến của tam giác ABC cắt nhau tại G
=> G là trọng tâm tam giác ABC
=> đpcm
Học tốt!!!!
Ở đoạn xét 2 tam giác mình viết bị lỗi, bạn viết thêm cho mình MB = MC (giả thiết) nhé!
a) Vì G là trọng tâm của tam giác AEF với đường trung tuyến AM nên theo định lí 3 đường trung tuyến cắt nhau tại trọng tâm ta có :
\(\dfrac{{AG}}{{AM}} = \dfrac{2}{3}\)\( \Rightarrow \dfrac{{GM}}{{AM}} = 1 - \dfrac{2}{3} = \dfrac{1}{3}\)
b) Vì \(\dfrac{{AG}}{{AM}} = \dfrac{2}{3}\) và \(\dfrac{{GM}}{{AM}} = \dfrac{1}{3}\)(theo câu a)
\( \Rightarrow \dfrac{{GM}}{{AG}} = \dfrac{1}{2}\)
c) Vì \(\dfrac{{GM}}{{AG}} = \dfrac{1}{2}\)(chứng minh b)
\( \Rightarrow \dfrac{{AG}}{{GM}} = 2\)
a) Gọi AM , BN , CP là các đường trung tuyến của \(\Delta ABC\) . Ta có GD = AG = 2GM và GD = GM + MD nên GM = MD
\(\Delta BMD=\Delta CMG\left(c.g.c\right)\)
\(\Rightarrow BD=CG=\dfrac{2}{3}CP\) (1)
Ta có \(BG=\dfrac{2}{3}BN\) (2)
\(GD=AG=\dfrac{2}{3}AM\) (3)
Từ (1) , (2) , (3) suy ra các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các đường trung truyến của \(\Delta ABC\)
b) Gọi CE , DF là các đường trung tuyến của \(\Delta BGD\) . Từ đây tự chứng minh \(BM=\dfrac{1}{2}BC;GE=\dfrac{1}{2}AB;DF=AN=\dfrac{1}{2}AC\)
Nguyễn Hariwon
sorry nhé em mk bấm nhầm