K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TL
3 tháng 4 2020

a)

– Xét ΔCAM và ΔCBD ta có:

+) AC = BC (ΔABC đều)

+) ∠ACM + ∠MCB = 60º, ∠BCD + ∠MCB = 60º nên suy ra ∠ACM = ∠BCD

+) MC = DC (ΔMCD đều)

=> ΔCAM = ΔCBD (c.g.c) (đpcm)

b) – Theo câu a, ΔCAM = ΔCBD (c.g.c)

=> BD = AM = 1 (cm) (Hai cạnh tương ứng)

=> ∠AMC = ∠BDC (Hai góc tương ứng) (1)

– Xét ΔBDM ta có:

AM = 1 cm,

BM là cạnh của hình vuông có diện tích bằng 3 cm². Nên suy ra: BM = √3 (cm).

MD = MC = 2 cm (ΔMCD đều).

Ta có: BM² + BD² = 1 + (√3)² = MD²

– Theo định lý Pi-ta-go đảo, suy ra: ΔBDM là tam giác vuông tại B (đpcm).

c) – Theo câu b ta có: ΔBDM là tam giác vuông tại B, mà BD = 1 cm, DM = 2 cm,

=> DM = 2BD nên suy ra: ∠BMD = 30º, mà ΔMCD là tam giác đều nên ∠CMD = 60º,

=> ∠BMC = 30º + 60º = 90º.

– Ta có: ∠BMD + ∠BDM = 90º

=> ∠BDM = 90º – 30º = 60º, mà ΔMCD là tam giác đều nên ∠MDC = 60º,

=> ∠BDC = ∠BDM + ∠MDC = 60º + 60º = 120º.

Từ (1) suy ra: ∠AMC = ∠BDC = 120º.

=> ∠AMB = 360º – (∠AMC + ∠BMC) = 360º – (120º + 90º) = 150º.

– Ta có: ∠AMD = ∠AMC + ∠DMC = 120º + 60º = 180º

=> Hai tia MA và MD là hai tia đối nhau

=> 3 điểm A, M, D thẳng hàng.

d) Theo câu c, ta có: ∠BMC = 90º nên suy ra: ΔBMC là tam giác vuông tại B.

=> BC² = BM² + MC² = 3 + 4 = 7.

=>Diện tích hình vuông có cạnh BC là S = BC² = 7 (cm²).

Hình tự vẽ!

19 tháng 5 2017

Tự vẽ hình nha !

Xét tam giác đều ABC có :

\(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)

Xét tam giác đều MDC có :

\(\widehat{DMC}=\widehat{MCD}=\widehat{CDM}=60^0\)

Ta có :

Góc ACB = ACM + MCB = 600

Góc MCD = MCB + BCD = 600

=> Góc ACM = Góc BCD

Xét tam giác ACM và tam giác BCD có :

AC = BC

CD = CM                        => tam giác ACM = tam giác BCD  

Góc ACM = Góc BCD 

19 tháng 5 2017

bcd gioi chua em la lop 4 do

21 tháng 8 2018

a, Xét \(\Delta ACM\)và \(\Delta BCD\)có :

MC = DC ( gt )

\(\widehat{ACM}\)\(\widehat{DCB}\)( cx cộng vs \(\widehat{MCB}\)

BC=Ac ( gt )

=> \(\Delta ACM=\Delta BCD\left(c-g-c\right)\)

b, \(BM.BM=3cm^2\)

\(\Rightarrow BM=\sqrt{3}\)

AD t/c Pi ta- go đảo, ta có :

\(MD^2=BM^2+BD^2\)

22 =  \(\left(\sqrt{3}\right)^2+1^2\)

4 = 3 + 1 \(\Rightarrow\Delta MBD\)vuông

c, Xét \(\Delta BMD\)vuông tại B, ta có :

BD = \(\frac{1}{2}MD\)

\(\Rightarrow\widehat{BMD}\)= 30o ,  \(\widehat{CMD}\)= 60o ( vì \(\Delta CMD\)đều )

Ta có : \(\widehat{BMD}\)\(\widehat{CMD}\) = \(\widehat{BMC}\)

30o + 60o = 90o

Vì \(\Delta MDC\)đều  \(\Rightarrow\widehat{MDC}\)= 60o

Ta có : \(\widehat{MBD}\)\(\widehat{BDM}\)\(\widehat{DMB}\)= 180o ( tổng 3 góc trong 1 \(\Delta\)

90o + \(\widehat{BDM}\)+ 30o = 180o

\(\widehat{BDM}\)= 60o

Mà \(\widehat{MDC}\)\(\widehat{BDM}\)= 60o + 60o = 120o

lại có : \(\Delta CAM=\Delta CBD\)(câu a ) => \(\widehat{AMC}\)= 120o

Ta có : \(\widehat{AMB}\)\(\widehat{BMC}\)\(\widehat{AMC}\)= 360o

\(\widehat{AMB}\)+ 90o + 120o = 360o

\(\widehat{AMB}\)= 1500

Mà \(\widehat{AMB}\)\(\widehat{BMD}=150^o+30^o=180^o\)

\(\Rightarrow\widehat{AMD}\)là góc bẹt

=> A, M,D thẳng hàng

d, Xét \(\Delta BMC\)vuông

BC2 = BM2 + MC2

       = \(\left(\sqrt{3}\right)^2+4\)

       = 7

=> \(BC=\sqrt{7}\)

Shv có cạnh BC là \(\sqrt{7}.\sqrt{7}=7\)

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

12 tháng 12 2020

đề bài sai

12 tháng 12 2020

Điểm M và N