Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
a) AEBF là hình thang vuôngvì EF là đường trung bình \(\Rightarrow EF//AB\)
b) Xét hai tam giác vuông ABK và EIK có góc EKI = góc AKB nên \(\Delta ABK\approx\Delta IEK\)
\(\Rightarrow\frac{AB}{BK}=\frac{EI}{EK}\)
c) Xét \(\Delta AKB=\Delta AKH\left(ch-gn\right)\)
+ AK chung
+ Góc BAK = góc HAK
Vậy BK = HK
Gọi giao điểm của HK và AK là P
Xét \(\Delta PBK=\Delta PHK\left(c.g.c\right)\)
+ PK Chung
+ BK = HK
+ Góc PKB = góc PKH
Suy ra góc PBK = góc PHK
Ta có
\(\hept{\begin{cases}\widehat{PBK}+\widehat{ABP}=90^0\\\widehat{BAP}+\widehat{ABP}=90^0\end{cases}}\Rightarrow\widehat{PBK}=\widehat{BAP}=\widehat{IAF}\left(1\right)\)
\(\hept{\begin{cases}\widehat{EKI}=\widehat{PKB}=\widehat{PKH}\\\widehat{EIK}+\widehat{EKI}=90^0\end{cases}}\)
Mà \(\hept{\begin{cases}\widehat{PKH}+\widehat{PHK}=90^0\\\widehat{EIK}+\widehat{PKH}=90^0\end{cases}\Rightarrow}\widehat{BHK}=\widehat{EIK}\left(2\right)\)
Từ (1) và (2) ta có đpcm vì hai tam giác BKH và AFI đều là hai tam giác cân có hai góc ở đáy bằng nhau
Nên hai tam giác trên đồng dạng
d)
bạn tự vẽ hinh nha
1)
Xét tam giác ABC có
hai đường cao BE và CD cắt nhau tại H nên H là trực tâm
do đó \(AH\perp BC\)
mà \(HM\perp BC\)
suy ra AH trùng với HM
vậy A; H; M thẳng hàng
b)
dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)
dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)
2)
a)
Xét tam giác ABC và tam giác DEC
có \(\widehat{BAC}=\widehat{CDE}\)
\(\widehat{ACB}\)chung
nên tam giác ABC đồng dạng với tam giác DEC
\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)
b)
Xét tam giác ABC
có AD là đường phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)
Từ (1) và (2) suy ra
\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)
Gọi giao điểm của AM và DE là O
a) Dễ chứng minh ADME là hình chữ nhật => AM = DE
Để ADME là hình vuông thì AM là tia phân giác của ^BAC => M là chân đường phân giác kẻ từ A đến BC
b) Tam giác AHM vuông tại H => HO = AO = MO = DO = EO
Xét tam giác DHE có HO = DO = EO => tam giác DHE vuông tại H => đpcm
c) Ta sẽ chứng minh HK = MN
Theo Talet : \(\frac{HK}{BK}=\frac{AD}{BD}\Rightarrow HK=\frac{BK\cdot AD}{DB}=\frac{BK\cdot ME}{DB}\)
Theo hệ thức lượng tam giác MEC có: \(ME^2=MN.MC\Rightarrow MN=\frac{ME^2}{MC}\)
Ta cần chứng minh: \(\frac{ME^2}{MC}=\frac{BK\cdot ME}{BD}\)
\(\Leftrightarrow\frac{ME}{MC}=\frac{BK}{DB}\)
Lại có tam giác BKD đồng dạng tam giác MNE => \(\frac{BK}{BD}=\frac{MN}{ME}\)
\(\Rightarrow\frac{ME}{MC}=\frac{MN}{ME}\Leftrightarrow ME^2=MC\cdot MN\) ( luôn đúng theo hệ thức lượng )
Do đó ta có HK = MN
<=> HK + HM = MN + HM
<=> KM = HN ( đpcm )
c) đang nghĩ :)
Tham khảo:
a) HKHK là đường trung tuyến trong △ADH△ADH vuông nên HK=AD2HK=AD2
Tương tự, FK=AD2=HKFK=AD2=HK. Suy ra △KFH△KFH cân tại KK
Ta có ˆAKF=180∘−2ˆKAFAKF^=180∘−2KAF^ do △AKF△AKF cân tại KK. Tương tự, ˆHKD=180∘−2ˆKDHHKD^=180∘−2KDH^
Suy raˆAKF+ˆHKD=180∘−2ˆKAF+180∘−2ˆKDH=360∘−2(ˆKAF+ˆKDH)=360∘−2(180∘−ˆACD)=360∘−2(180∘−60∘)=120∘AKF^+HKD^=180∘−2KAF^+180∘−2KDH^=360∘−2(KAF^+KDH^)=360∘−2(180∘−ACD^)=360∘−2(180∘−60∘)=120∘
Mà ˆFKH=180∘−ˆAKF−ˆHKD=60∘FKH^=180∘−AKF^−HKD^=60∘
Vậy △KFH△KFH đều
b) Chứng minh như câu a, ta được △KEH△KEH đều, suy ra KEHFKEHF là hình thoi. Như vậy thì 2 đường chéo vuông góc, hay KH⊥EF