K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2:

a: Vì ΔABC~ΔDEF theo tỉ số đồng dạng là \(k=\dfrac{1}{2}\)

nên \(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=k=\dfrac{1}{2}\)

=>\(\dfrac{6}{DE}=\dfrac{8}{DF}=\dfrac{BC}{20}=\dfrac{1}{2}\)

=>\(DE=6\cdot2=12;DF=8\cdot2=16;BC=\dfrac{20}{2}=10\)

Chu vi tam giác ABC là:

10+6+8=24

Chu vi tam giác DEF là:

12+16+20=48

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

=>\(BD=3\cdot\dfrac{10}{7}=\dfrac{30}{7};CD=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\)

 

 

Bài 1:

a: M thuộc AB

\(AM=\dfrac{1}{2}AB\)

Do đó: M là trung điểm của AB

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)

nên MN//BC

Xét ΔAMN và ΔABC có

\(\widehat{AMN}=\widehat{ABC}\)(hai góc đồng vị, MN//BC)

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔABC

b: ΔAMN~ΔABC

=>\(k=\dfrac{MN}{BC}=\dfrac{1}{2}\)

Bài 2:

loading...

loading...

15 tháng 4 2020

Bài 2 : 

vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :

AEEB=ECBCAEEB=ECBC

⇒⇒ CE=AB.BCABCE=AB.BCAB

⇒⇒ CE=AE.23CE=AE.23

⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2

⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC

⇒⇒ CE=2AC=6(cm) 

Bài 1: Giải

Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)

k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23

Chu vi của tam giác 1 là:

12+16+18=46(m)12+16+18=46(m)

⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)

Cạnh thứ hai của tam giác đồng dạng (2) là:

16:23=24(m)16:23=24(m)

Cạnh lớn nhất của tam giác đồng dạng (2) đó là:

69−24−18=27(m

Bài 3 tớ k bt lm 

15 tháng 4 2020

copy mạng nhớ ghi nguồn nhé bạn =))))

học tốt bro :))

~~

2 tháng 3 2016

câu 1 : vì MN là đường TB của tam giác ABC => MN // BC nên theo hệ quả định lí ta-lét , ta có :


\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
=> tam giác ABC đồng dạng với tam giác AMN theo trường hợp cạnh cạnh cạnh

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78