Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải: a) Xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}\)= 1800
=> \(\widehat{A}\)= 1800 - \(\widehat{B}\)- \(\widehat{C}\)= 1800 - 250 - 200 = 1350
b) Ta có : góc EAB + góc BAD = 1800
=> góc EAB = 1800 - BAD = 1800 - 900 = 900
Xét t/giác ABE và t/giác ABD
có AE = AD (gt)
góc EAB = góc CAB = 900 (cmt)
AB : chung
=> t/giác ABE = t/giác ABD (c.g.c)
b) Ta có: t/giác ABE = t/giác ABD (cmt)
=> BE = BD (hai cạnh tương ứng)
=> góc EBA = góc ABD (hai góc tương ứng)
Xét t/giác BHE và t/giác BHD
có BE = BD (cmt)
góc EBH = góc HBD (cmt)
BH : chung
=> t/giác BHE = t/giác BHD (c.g.c)
d) Gọi giao điểm của DH và BE là I
Ta có : t/giác BHE = t/giác BHD (cmt)
=> HE = HD (hai cạnh tương ứng)
=> góc BEH = góc HDB (hai góc tương ứng)
Xét t/giác EIH và t/giác DFH
có góc BEH = góc HDB (cmt)
HE = HD (cmt)
góc IHE = góc FHD (đối đỉnh)
=> t/giác EIH = t/giác DFH (g.c.g)
=> góc EIH = góc HFC (hai góc tương ứng)
Mà góc HFC = 900 (EF \(\perp\)BD)
=> góc EIH = 900
=> DI \(\perp\)EB => DH \(\perp\)EB
a, xét tam giác AMD và tam giác AND có : AD chung
^MAD = ^NAD do AD là pg của ^BAC (gt)
^AMD = ^AND = 90
=> tam giác AMD = tam giác AND (ch-gn)
b, xét tam giác BMD vuông tại M => ^B + ^MDB = 90 (đl)
^B = 30 (gt)
=> ^MDB = 60
tương tự tính đượng ^NDC = 60
có : ^MDB + ^NDC + ^MDN = 180
=> ^MDN = 60
c, AB = AC do tam giác ABC cân tại A (gt)
AM = AN do tam giác AMD = tam giác AND (Câu a)
AB = AM + BM
AC = AN + NC
=> BM = NC
xét tam giác DMB và tam giác DNC có : ^B = ^C
^DMB = ^DNC = 90
=> tam giác DMB = tam giác DNC (cgv-gnk)
a: Ta có:ΔABC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BAC}+50^0=90^0\)
=>\(\widehat{BAC}=40^0\)
b: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
c: Xét ΔFAB vuông tại A và ΔEBA vuông tại B có
AB chung
\(\widehat{FBA}=\widehat{EAB}\)(hai góc so le trong, FB//AE)
Do đó: ΔFAB=ΔEBA
d: Sửa đề: I là trung điểm của BA
Xét tứ giác AFBE có
AF//BE
AE//BF
Do đó: AFBE là hình bình hành
=>AB cắt FE tại trung điểm của mỗi đường
mà I là trung điểm của AB
nên I là trung điểm của FE
=>F,I,E thẳng hàng
hình vẽ đâu bạn