Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh: A B E ^ = A D E ^
b, Chứng minh được:
A
C
B
^
=
B
N
M
^
=> C, D, E nhìn AB dưới góc bằng nhau nên A, B, C, D, E cùng thuộc một đường tròn
=> BC là đường kính => B E C ^ = 90 0
Sửa lại đề Từ I kẻ đường thẳng song song AC cắt AB,BC lần lượt tại M,N
Vì MN//AC nên: \(\widehat{ACB}=\widehat{INB}\)(đồng vị)
Mà BIND là tứ giác nội tiếp nên: \(\widehat{ADB}=\widehat{INB}\)
Cho nên: \(\widehat{ACB}=\widehat{ADB}\)
Suy ra: ABDC là tứ giác nội tiếp
Đồng thời: \(\widehat{ADE}=\widehat{NBI}=\widehat{ABE}\Rightarrow\)ABDE là tứ giác nội tiếp
Vậy A,B,C,D,E cùng thuộc một đường tròn
Hơn nữa: tam giác ABC vuông tại A
Suy ra: BC là đường kính của đường tròn ngoại tiếp ngũ giác ABDCE
Vậy BE vuông góc CE
Hình vẽ:(Mình k chắc nó có hiện ra k nha )
a: Xét (O) có
MB,MC là tiếp tuyến
=>MB=MC
mà OB=OC
nên OM là trung trực của BC
Xét ΔMEB và ΔMBF có
góc MBE=góc MFB
góc EMB chung
=>ΔMEB đồng dạng với ΔMBF
=>MB^2=ME*MF=MH*MO