K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

a) Xét tam giác ABC vuông tại A có: 

+ E là trung điểm của AB (gt).

+ F là trung điểm của AC (gt).

=> EF là đường trung bình (định nghĩa đường trung bình trong tam giác).

=> 2EF = BC (Tính chất đường trung bình trong tam giác).

=> 2.4 = 8 (cm).

b) Xét tứ giác AECM có:

+ F là trung điểm của EM (do M là điểm đối xứng của E qua F).

+ F là trung điểm của AC (gt).

=> Tứ giác AECM là hình bình (dhnb).

a: Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của BC

Do đó: DE là đường trung bình của ΔABC

16 tháng 12 2020

Bn tự vẽ hình nha!

A, Xét tam giác ABC

 e là trung điểm AB -gt

f là trung điểm AC-gt

-> EF là đg trung bình của tam giác ABC

->EF song song BC;EF=1/2 BC(đpcm)

B,

TA có tam giác abc cân tại a

mà am là đg trung tuyến(gt)

-> am là đg cao hay góc AMC bằng 90 độ

Xét tứ giác AMCK có

AF=FC=1/2AC(f là trung điểm AC - gt)

FK=FM=1/2KM( M đối K qua F- gt)

mà AC cắt KM tại F

->AMCK là hình bình hành

Ta có AMCK là hình bình hành(cmt)

mà có góc AMC= 90 độ ( cmt)

->AMCK là hcn( HÌNH bình hành có 1 góc vuông)

C, TA có AM là đg trung tuyến hay M là trung điểm AC

-> MB=MC

mà MC =AK( do AMCK là hcn-cmt)

-> MB=AK

ta có

AC=KM(do AMCK là hình chữ nhật)

mà AB= AC( tam giác ABC là tam giác cân-gt)

->KM=AB

Xét tứ giác ABMK có 

AK=BM(Cmt)

AB=KM(cmt)

-> ABKM là hbh-đpcm

Xong rùi nhe bnhaha

18 tháng 12 2022

a: Xét ΔCAB có CF/CA=CE/CB

nên FE//AB và FE=AB/2

=>FE//AD và FE=AD

Xét tứ giác AFED có

FE//AD

FE=AD

góc FAD=90 độ

Do đó: AFED là hình chữ nhật

Xét tứ giác AECK có

F là trung điểm chung của AC và EK

EA=EC

Do đó: AECK là hình thoi

b: \(S_{ABC}=\dfrac{1}{2}\cdot4\cdot5=10\left(cm^2\right)\)

18 tháng 12 2022

a: Xét ΔCAB có CF/CA=CE/CB

nên FE//AB và FE=AB/2

=>FE//AD và FE=AD

Xét tứ giác AFED có

FE//AD

FE=AD

góc FAD=90 độ

Do đó: AFED là hình chữ nhật

Xét tứ giác AECK có

F là trung điểm chung của AC và EK

EA=EC

Do đó: AECK là hình thoi

b: \(S_{ABC}=\dfrac{1}{2}\cdot4\cdot5=10\left(cm^2\right)\)

Bài 2. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và ACa) Tứ giác BMNC là hình gì? Tại sao ?b) Gọi E là điểm đối xứng của M qua N. CM tứ giác AECM là hình bình hành vàEC=BM.c) Tam giác ABC cần có thêm điều kiện gì để tứ giác AECM là :- Hình chữ nhật- Hình thoi- Hình vuôngBài 3. Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D quatrung điểm M của AC.a, Tứ giác ADCE là hình gì? Vì sao?b,...
Đọc tiếp

Bài 2. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC
a) Tứ giác BMNC là hình gì? Tại sao ?
b) Gọi E là điểm đối xứng của M qua N. CM tứ giác AECM là hình bình hành và
EC=BM.
c) Tam giác ABC cần có thêm điều kiện gì để tứ giác AECM là :
- Hình chữ nhật
- Hình thoi
- Hình vuông
Bài 3. Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a, Tứ giác ADCE là hình gì? Vì sao?
b, Tứ giác ABDM là hình gì? Vì sao?
c, Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d, Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Bài 4. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của
CD. Gọi I là giao điểm của AF và DE, K là giao điểm của BF và CE.
Chứng minh rằng:
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AEFD là hình gì? Vì sao?
c) Chứng minh tứ giác EIFK là hình chữ nhật.
d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông

0
2 tháng 12 2021

Bài 1:

a) Xét tam giác ABC vuông tại A có: 

+ D là trung điểm của AB (gt).

+ E là trung điểm của AC (gt).

=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).

Mà BC = 10 cm (gt).

=> DE = 5 cm.

Vậy DE = 5 cm.

b) Xét tam giác ABC vuông tại A có: 

DE là đường trung bình (cmt)

=> DE // BC (Tính chất đường trung bình trong tam giác).

Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.

Mà DE = \(\dfrac{1}{2}\)BC (cmt).

=> BF = CF = DE = \(\dfrac{1}{2}\)BC.

Xét tứ giác BDEF có: 

+ BF = DE (cmt).

+ BF // DE (do DE // BC).

=> Tứ giác BDEF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

+ D là trung điểm của AB (gt).

+ F là trung điểm của BC (gt).

=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DF // AC  và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác). 

Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).

Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).

=> AE = CE = DF = \(\dfrac{1}{2}\)AC.

Xét tứ giác ADEF có:

+ AE = DF (cmt).

+ AE // DF (do DF // AC).

=> Tứ giác ADEF là hình bình hành (dhnb).

Mà ^DAE = 90o (do tam giác ABC vuông tại A).

=> Tứ giác ADEF là hình chữ nhật (dhnb).

d) Gọi I là giao điểm của AF và DE.

Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).

=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)

Ta có: G là điểm đối xứng của F qua D (gt).

=> D là trung điểm của CG.

=> DF = \(\dfrac{1}{2}\)GF.

Mà DF = \(\dfrac{1}{2}\)AC (cmt).

=> GF = AC.

Xét tứ giác GACF có:

+ GF = AC (cmt).

+ GF // AC (do DF // AC).

=> Tứ giác GACF là hình bình hành (dhnb).

=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).

Mà I là trung điểm của AF (cmt)

=> I là trung điểm của GC (2).

Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.

hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).