Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét tam giác BAD và tam giác BKD có :
BD : cạnh chung
BA = BK
Góc ABD = Góc DBK
==> Tam giác ABD = Tam giác KBD ( C - G - C )
==> AD = DK ( đpcm )
b, Xét tam giác ADE và tam giác KDC có :
AD = DK
Góc ADE = Góc KDC
Góc DAE = Góc DKC
==> Tam giác ADE = Tam giác KDC ( G - C - G )
c, Xét tam giác BAM và tam giác BKM có :
BM : cạnh chung
BA = BK
Góc ABM = Góc MBK
==> Tam giác ABM = Tam giác KBM ( C - G - C )
==> Góc BMA = Góc BMK Mà Góc AMK = 180 độ
==> Góc BMA = Góc BMK = 90 độ
==> AK vuông góc với BD
Ta có hình vẽ
Tớ chỉ vẽ hình thôi còn bài tự làm nhé! g
Gợi ý:
a) trước tiên ta xét Tam giác chứa cạnh AD và DK
Còn Muốn CM EK vuông góc vói BC thì CM nó tạo thành một góc 90 độ
b) chúng minh theo các trường hợp (c.g.c) (g.c.g) (c.c.c)

a) Xét tam giác ABD và tam giác BHD có:
\(\widehat{BAD}=\widehat{BHD}=90^0\)
\(\widehat{ABD}=\widehat{HBD}\)(giả thiết)
BD - cạnh chung
\(\Rightarrow\)tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn)
\(\Rightarrow AD=HD\)(2 cạnh tương ứng)
b) Kéo dài BD cắt KC tại I
Xét tam giác ADK và tam giác HDC có:
AD = HD (theo chứng minh câu a)
\(\widehat{DAK}=\widehat{DHC}=90^0\)
\(\widehat{ADK}=\widehat{HDC}\)(2 góc đối đỉnh)
\(\Rightarrow\)tam giác ADK = tam giác HDC (g - c - g)
\(\Rightarrow AK=HC\)
Ta có: BK = AB+AK
BC = BH + HC
\(\Rightarrow BK=BC\)
Xét tam giác BKI và tam giác BIC có:
BI - cạnh chung
\(\widehat{KBI}=\widehat{CBI}\)(gt)
BK = BC (chứng minh trên)
\(\Rightarrow\)tam giác BKI = tam giác BCI (c - g - c)
\(\Rightarrow\widehat{BIK}=\widehat{BIC}\)(2 góc tương ứng)
\(\Rightarrow IK=IC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BKI}=\widehat{BCI}\)(2 góc tương ứng)
Mà \(\widehat{BIK}+\widehat{BIC}=180^0\)
\(\Rightarrow\widehat{BIK}=\widehat{BIC}=\frac{1}{2}180^0=90^0\)
Vậy BD vuông góc với KC tại I
c) Ta có: tam giác BDK = tam giác BDC (c - g - c) (bạn tự chứng minh nhé)
\(\Rightarrow\widehat{BKD}=\widehat{BCD}\)(2 góc tương ứng)
Mà \(\widehat{BKI}+\widehat{DKI}=\widehat{BKI}=\widehat{BCI}=\widehat{BCD}+\widehat{DCK}\)
\(\Rightarrow\widehat{DKC}=\widehat{DCK}\)
d) Ta có: AD + AK > KD (theo bất đẳng thức trong tam giác) (1)
KD > KI (theo quan hệ giữa đường vuông góc và đường xiên) (2)
Từ (1) và (2) \(\Rightarrow AD+AK>KI\)
Mà \(KI=\frac{1}{2}KC\)
\(\Rightarrow AD+AK>\frac{1}{2}KC\)
\(\Rightarrow2\left(AD+AK\right)>KC\)
a) vì D thuộc fân giác góc B => AD=DH
b) do KH vuông góc BC , CA vuông góc BK
=>giao điểm D là trực tâm của tam giác BKC
=>BD vuông góc KC
c) xét tam giác vuông KAD và tam giác vuông CHD có:
AD=DH ; góc ADK=góc HDC (đối đỉnh) => hai tam giác vuông trên bằng nhau
=> DK = DC ( cạnh tương ứng)
=> tam giác KDC cân tại D
=>góc DKC = góc DCK
d)xét tam giác ADK có :AD+AK> KD => 2(AD+AK)> 2KD (1)
xét tam giác KDC có : KD+DC >.KC
mà KD=DC => 2KD>KC (2)
Từ (1) ;(2) ta có 2(AD+AK) > KC
VẾ (1) VÀ(2) LÀ DÙNG BẤT ĐẲNG THỨC TAM GIÁC ĐÓ BẠN!
A. Xét......
=> AK=KD
B. Xét......
=>KB là trung trực AD
C. Xét....
=> KH=KC
D. Xét.....
=>KC>AK