Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (A;AH) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;AH)
b: Xét (A) có
BH,BD là các tiếp tuyến
Do đó: BH=BD và AB là phân giác của góc HAD
Xét (A) có
CE,CH là các tiếp tuyến
Do đó: CE=CH và AC là phân giác của góc HAE
c: BD+CE
=BH+CH
=BC
d: AB là phân giác của góc HAD
=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)
AC là phân giác của góc HAE
=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)
=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)
=>E,A,D thẳng hàng
a) Vì \(BC\bot AH\Rightarrow BC\) là tiếp tuyến của (A;AH)
Vì BD,BH là tiếp tuyến \(\Rightarrow AB\) là phân giác \(\angle DAH\Rightarrow\angle DAH=2\angle BAH\)
Vì CE,CH là tiếp tuyến \(\Rightarrow AC\) là phân giác \(\angle EAH\Rightarrow\angle EAH=2\angle CAH\)
\(\Rightarrow\angle DAH+\angle EAH=2\left(\angle BAH+\angle CAH\right)=2\angle BAC=180\)
\(\Rightarrow\angle DAE=180\Rightarrow D,A,E\) thẳng hàng
b) Vì \(AB\) là phân giác \(\angle DAH\)
\(\Rightarrow\angle DAB=\angle BAH=90-\angle ABC=\angle ACB\)
\(\Rightarrow DA\) là tiếp tuyến của (BAC) nên DE là tiếp tuyến của (BAC)
mà \(\angle BAC=90\Rightarrow\) (BAC) là đường tròn đường kính (BC)
nên ta có đpcm
Tự vẽ hình nha !
a) Ta có AH vuông góc BC
H thuộc (A;AH)
=> BC là tiếp tuyến của (A;AH)
Xét (A) có DB và BH là 2 tiếp tuyến cắt nhau
=> A1 = A2
Tương tự ta chứng minh được : A3 = A4
Mà A2 + A3 = 90 độ
=> A1 + A2 + A3 + A4 = 90 độ + 90 độ = 180 độ
=> DAE = 180 độ
=> D,A,E thẳng hàng
b) Gọi M là trung điểm BC
Theo tính chất tiếp tuyến ta có :
AD vuông góc BD
AE vuông góc CE
=> BD//CE
=> BDEC là hình thang
=> MA là đường trung bình của hình thang BDEC
=> MA // BD
=> MA vuông góc DE
Xét tam giác vuông ABC có : MA = MB = MC
=> M là tâm đường tròn đường kính BC với MA là bán kính
Vậy DE là tiếp tuyến đường tròn tâm M đường kính BC
tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp
==> 4 điểm B,E,F,C cùng thuộc một đường tròn.
Bài 2:
a: Xét (E) có
DF⊥DE tại D
nên DF là tiếp tuyến của (E;ED)