K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

a, \(\Delta ABC,\hat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

\(\Leftrightarrow10^2=6^2+AC^2\)

\(\Leftrightarrow AC^2=64\)

\(\Leftrightarrow AC=8\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:

\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)

Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)

Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)

22 tháng 7 2018

2 câu kia mình nghĩ sau

11 tháng 6 2021

A B C 6 10 H D M N

a, Xét tam giác ABC vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm

* Áp dụng hệ thức : 

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm

* Áp dụng hệ thức : 

\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm 

\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm 

Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm 

Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2

11 tháng 6 2021

b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )

\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)

\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm 

\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm 

Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có : 

\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm

22 tháng 11 2021

\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)

22 tháng 11 2021

s cái font chữ nhìn lạ dzậy =)) ???

23 tháng 9 2019

Ý cuối câu b.

Sử dụng công thức tính diện tích tam giác ABC. Ta có:

\(\frac{1}{2}AB.\sin\widehat{A}.AC=\frac{1}{2}AH.BC\)

=> \(AB.\sin\widehat{A}.AC=AH.BC\)

Ta đã tính được: \(AH=3\sqrt{3};AB=6;AC=2\sqrt{13};MN=\frac{18\sqrt{13}}{13};BC=8\) ( để tính MN sử dụng tam giác đồng dạng ở câu b ý 1 nha)

=> \(\sin\widehat{A}.AH=\frac{AH^2.BC}{AB.AC}=\frac{18\sqrt{13}}{13}=MN\)

23 tháng 9 2019

tính MN sử dụng cặp tỉ số đồng dạng đúng không ạ ?

Bạn tự vẽ hình nha =="

AC = AH + HC = 6 + 4 = 10 (cm)

mà AC = AB (tam giác ABC cân tại A)

=> AB = 10 (cm)

Tam giác HAB vuông tại H có:

AB2 = AH2 + BH(định lý Pytago)

102 = 62 + BH2

BH2 = 102 - 62

BH2 = 100 - 36

BH2 = 64

BH = 8 (cm)

Tam giác HBC vuông tại H có:

BC2 = BH2 + CH2

BC2 = 82 + 42

BC2 = 64 + 16

BC2 = 80

BC = 80(cm)80(cm)

Chúc bạn học tốt ^^

Thu gọn
Đúng 0
Bình luận
 
12 tháng 3 2017 lúc 20:14
 
 

Bạn tự vẽ hình nha. Cũng đơn giản lắm....

Xét hai tam giác vuông AHB và BHC có :

AH = HC (= 6cm)

HB là cạnh chung

Do đó : ΔAHB=ΔCHBΔAHB=ΔCHB(cạnh - góc - cạnh)

=> BC = AB ( hai cạnh tương ứng)

Mà AB = AC ( định nghĩa tam giác cân)

=> BC = AB = AH+CH= 12cm