K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

:a) Xét tam giác ABC có BC2=AB2+AC2 ( Định lý Py-ta-go)

Thay số:BC2=6 2+8 2 BC2=36+64=100 =>BC=10(cm)

b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2

Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:

Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/AB

=>BA^2=BH*BC

b: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=căn 16*25=20(cm)

S=15*20/2=150cm2

c: AD/DC=HA/HC=12/16=3/4

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy:BC=10cm

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b: ΔACB vuông tại A có AH là đường cao

nên AB^2=BH*BC

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)

\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)

mà AD+DC=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Vậy: AD=3cm; DC=5cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{HBA}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔBAC có BD là phan giác

=>AD/AB=DC/BC

=>AD/3=DC/5=8/8=1

=>AD=3cm; DC=5cm

b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>AD/HI=BA/BH

=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID

=>ΔAID cân tại A

21 tháng 3 2023

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>DA/AB=DC/AC

=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1

=>DA=3cm; DC=5cm

b: IH/IA=BH/BA

AD/DC=BA/BC

mà BH/BA=BA/BC

nên IH/IA=AD/DC

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

c: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

BH=AB^2/BC=6^2/10=3,6cm

CH=10-3,6=6,4cm

d: AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm