Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 22 + 22
\(\Rightarrow\)BC2 = 8
\(\Rightarrow\)BC = \(\sqrt{8}\)
Vậy độ dài cạnh BC là \(\sqrt{8}\)dm.
b) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\)22 = AB2 + AB2 (Vì AB=AC)
\(\Rightarrow\)4 = 2AB2
\(\Rightarrow\)2 = AB2
\(\Rightarrow\sqrt{2}\)= AB
Vậy độ dài cạnh AB = \(\sqrt{2}\)m
c) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\left(\sqrt{18}\right)^2\)= AC2 + AB2 (Vì AB=AC)
\(\Rightarrow\)18 = 2AC2
\(\Rightarrow\)9 = AC2
\(\Rightarrow\)3 = AC
Vậy độ dài cạnh AC = 3
a, Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)((định lí pytago)
\(\Rightarrow2^2+2^2=BC^2\)
\(\Leftrightarrow BC^2=8\\ \Leftrightarrow BC=\sqrt{8}\left(dm\right)\)
b), Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)(Định lý Pitago)
\(\Rightarrow AB^2+AC^2=2^2\)
\(\Leftrightarrow2AB^2=4\)
\(\Leftrightarrow AB^2=2\\ AB=\sqrt{2}\left(m\right)\)
c, Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)(Định lý Pitago)
\(\Rightarrow AB^2+AC^2=\sqrt{8}^2\)
\(\Leftrightarrow2AC^2=8\\ \Leftrightarrow AC^2=4\\ \Leftrightarrow AC=2\)
ĐS:.................................
#Châu's ngốc
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
a) bạn tự vẽ hình nhé
sau khi kẻ, ta có AC=AH+HC=11
mà tam giác ABH vuông tại H
=> theo định lý Pytago => AH^2+BH^2=AB^2
=>BH=căn bậc 2 của 57
cũng theo định lý Pytago
=>BC^2=HC^2+BH^2
=>BC=căn bậc 2 của 66
b) bạn tự vẽ hình tiếp nha
ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A
=>AM=MB=MC
theo định lý Pytago =>do tam giác HAM vuông tại H
=>HM^2+HA^2=AM^2
=>HM=9 => HB=MB-MH=32
=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624
tương tự tính được AC=căn bậc 2 của 4100
=> AC/AB=5/4
CHÚC BẠN HỌC TỐT!!!
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Bài 1 :
Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)
\(\Rightarrow AB=BC=CD=AD=4\)cm
Áp dụng định lí pytago tam giác ADC vuông tại D ta có :
\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm
Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm
Bài 2 :
Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)
Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :
\(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
Bài 1 :
a) Vì \(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABC\)ta có :
\(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}=\frac{110^0}{2}=55^0\)
b) Xét \(\Delta ABH\)và \(\Delta ACH\)có :
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(AB=AC\left(gt\right)\)
\(AH\)chung
=> \(\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
=> \(\widehat{HAB}=\widehat{HAC}\)(hai góc tương ứng)
=> AH là tia phân giác của góc A
Bài 2 : a) Xét \(\Delta ABC\)ta có :
AB2 + BC2 = AC2(định lí)
=> 62 + 82 = AC2
=> 36 + 64 = AC2
=> AC2 = 100
=> AC = 10(cm)
b) Xét \(\Delta ABE\)và \(\Delta AHE\)có :
\(\widehat{B}=\widehat{H}=90^0\)
AE chung
\(\widehat{BAE}=\widehat{HAE}\left(gt\right)\)
=> \(\Delta ABE=\Delta AHE\left(ch-gn\right)\)
c) Vì \(\Delta ABE=\Delta AHE\)=> AB = AH => \(\Delta ABH\)cân tại A
Đề bị lỗi rồi, em sử lại đi
Giải giúp mk vs ạ