Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
d, tim AH=16,8cm do tam giác ABH dồng dạng với tam giác CBA các cạnh tuong ứng tỉ lệ
tinh CD tính chất dg pg \(\frac{CD}{DB}=\frac{AC}{AB}\)
tính chat day ti so bang nhau
\(\frac{CD}{DB+CD}=\frac{AC}{AB+AC}\)
thế số vao rồi tính suy ra CD=20, BD=15
pytago trong tam giác HAC tińh CH=22,4
suy ra DH=2,4
Diện tích tam giác AHD=1/2 *AH*DH=20,16
Ban có thể tính laị so lieu
a. Do DK // BC hay DG // BH, theo định lí Ta-lét ta có:
\(\dfrac{DG}{BH}=\dfrac{AG}{GH}\left(a\right)\)
Do DK // BC hay GK // HC, theo định lí Ta-lét ta có:
\(\dfrac{GK}{HC}=\dfrac{AH}{HG}\left(b\right)\)
Từ (a) và (b) => \(\dfrac{DG}{BH}=\dfrac{GK}{HC}\left(đpcm\right)\)
b. Do DK // BC, theo định lí Ta-lét ta có:
\(\dfrac{DK}{BC}=\dfrac{AD}{DB}=\dfrac{AK}{KC}=\dfrac{1}{3}\left(c\right)\)
Từ (c) => \(\Delta ADK\sim\Delta ABC\left(c.c.c\right)\)
\(\Rightarrow S_{ADK}=\dfrac{1}{3}S_{ABC}=\dfrac{1}{3}\cdot36=12\left(cm^2\right)\)