Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M 1 2 1 2
a) Trên tia đối của tia AM lấy K sao cho AM=KM
Xét ∆AMC và ∆KMB ta có:
AM=KM (cách vẽ)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM=BM (M là trung điểm BC)
=> ∆AMC=∆KMB
=> \(\widehat{CAM}=\widehat{BKM,}\)BK = AC>AB
Khi đó trong ∆ABK có:
BK>AB => \(\widehat{BAK}>\widehat{BKA}\Rightarrow\widehat{BAM}>\widehat{CAM}\)
Tớ giải vầy, các bạn xem rồi nhận xét nhé!
*Bài làm
Kéo dài AM một đoạn ME sao cho AM=ME
Xét tam giác ABM và tam giác ECM:
AM=ME(gt)
Góc BMA=CME(đối đỉnh)
BM=MC(gt)
=> Tam giác ABM=tam giác ECM(c-g-c)
Suy ra:
AB=EC và góc BAM=CEM
Xét tam giác ACE có: EC<AC. Suy ra:
Góc CAE<CEA=>góc CAM<CEM=>góc CAM<BAM
b/ Xét tam giác MCD. Ta có:
Góc MDC=Góc MAD+AMD (1)
Vì góc BMD là góc ngoài tam giác CMD nên ta có:
Góc BMD=MCD+MDC
=> 2*góc AMD=góc MCD+MDC (2)
Từ (1) suy ra:
2*góc MDC=2*góc MAD+2*góc AMD=>2*MDC=2*MAD+MCD+MDC
=> MDC=2*MAD+MCD
Vậy Góc MDC>MCD suy ra CM>MD
Tớ giải vầy, các bạn xem rồi nhận xét nhé!
*Bài làm
Kéo dài AM một đoạn ME sao cho AM=ME
Xét tam giác ABM và tam giác ECM:
AM=ME(gt)
Góc BMA=CME(đối đỉnh)
BM=MC(gt)
=> Tam giác ABM=tam giác ECM(c-g-c)
Suy ra:
AB=EC và góc BAM=CEM
Xét tam giác ACE có: EC<AC. Suy ra:
Góc CAE<CEA=>góc CAM<CEM=>góc CAM<BAM
b/ Xét tam giác MCD. Ta có:
Góc MDC=Góc MAD+AMD (1)
Vì góc BMD là góc ngoài tam giác CMD nên ta có:
Góc BMD=MCD+MDC
=> 2*góc AMD=góc MCD+MDC (2)
Từ (1) suy ra:
2*góc MDC=2*góc MAD+2*góc AMD=>2*MDC=2*MAD+MCD+MDC
=> MDC=2*MAD+MCD
Vậy Góc MDC>MCD suy ra CM>MD
Ai k mk mk k lại!
a,Xét tg BAM= tg MAC (cgc)
Ta có : AB<AC
=> Góc AMB< góc AMC
Mà góc BAM = góc AMC (slt)
và góc MAC = góc BMA (slt)
=> góc A= góc M
Mà góc AMB < góc AMC
<=> góc CAM = góc BAM (đpcm)
b, từ mk sẽ lm típ
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm