Bài 1: ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

a/Chứng minh: tam giác ABM = tam giác ACM.

b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.

c/ Chứng minh: AM là tia phân giác của góc BAC.

Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. 

Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB lấy điểm D sao cho AD = AC. E là trung điểm của DC. Từ B vẽ BK vuông góc với CD. Chứng minh: AE // BK.

Bài 4: Cho góc nhọn xOy, Trên tia Ox, Oy lấy tương ứng hai điểm A và B sao cho OA = OB. Vẽ đường tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại hai điểm M, N nằm trong góc xOy. Chứng minh:

a/ tam giác OMA = tam giác OMB và tam giác ONA = tam giác ONB.

b/ 3 điểm O, M, N thẳng hàng.

c/ tam giác AMN = tam giác BMN. 

d/ MN là tia phân giác của góc AMB.

Bài 5: Cho tam giác ABC có AB = AC. Gọi D, E là 2 điểm trên cạnh BC sao cho BD = DE = EC. Biết AD = AE.

a/ Chứng minh: ÄABE = ÄACD.

b/ Gọi M là trung điểm của BC. Chứng minh rằng AM là tia phân giác của góc DAE.

c/ Giả sử góc DAE bằng 600, tính các góc còn lại của tam giác ADE.

d/ Chứng minh: AM vuông góc với BC.

Bài 6: Cho tam giác ABC. Vẽ đoạn thẳng AD vuông góc với AB (D và C nằm khác phía đối với AB) sao cho AD = AB. Vẽ đoạn thẳng AE vuông góc với AC (E và B nằm khác phía đối với AC) sao cho AE = AC. Biết DE = BC. Tính góc BAC.

Bài 7: Cho đoạn thẳng AB, điểm C cách đều hai điểm A và B, điểm D cách đều hai điểm A và B (C và D nằm khác phía đối với AB).

a/ Chứng minh: CD là tia phân giác của góc ACD.

b/ Kết quả câu a còn đúng không nếu C và D nằm cùng phía đối với AB?

Chỉ cách giải nhé, KHÔNG phải bài giải

p/s: có thể một số chỗ sai, mong thông cảm

1
27 tháng 7 2021

cần gấp ạ

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm

Bài 1) .

Ta có : AB =AC ( gt)

=> ∆ABC cân tại A 

=> B = C 

Xét ∆ ABE và ∆ ACD ta có 

AD = DE ( gt)

AB = AC ( gt)

B = C ( cmt)

=> ∆ABE = ∆ACD ( c.g.c)

=> EAB = DAC (dpcm)

b) Vì M là trung điểm BC

=> BM = MC 

Mà ∆ABC cân tại A ( cmt)

=> AM là trung tuyến ∆ABC 

=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC 

Mà D,E thuộc BC 

AM vuông góc với DE 

Mà ∆ADE cân tại A ( AD = AE )

=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE 

=> AM là phân giác DAE 

c) Vì AM là phân giác DAE 

=> DAM = EAM = 60/2 = 30 độ

= > Mà AM vuông góc với DE (cmt)

=> AME = AMD = 90 độ

=> AME + MAE + AEM = 180 độ

=> AEM = 180 - 90 - 30 = 60 độ

Mà ∆ADE cân tại A 

=> ADE = AED = 60 độ

Bài 2)

Trong ∆ABC có A = 90 độ

=> BAC = 90 độ :))))))

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.a/Chứng minh: tam giác ABM = tam giác ACM.b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.c/ Chứng minh: AM là tia phân giác của góc BAC.Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

a/Chứng minh: tam giác ABM = tam giác ACM.

b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.

c/ Chứng minh: AM là tia phân giác của góc BAC.

Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. 

Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB lấy điểm D sao cho AD = AC. E là trung điểm của DC. Từ B vẽ BK vuông góc với CD. Chứng minh: AE // BK.

Bài 4: Cho góc nhọn xOy, Trên tia Ox, Oy lấy tương ứng hai điểm A và B sao cho OA = OB. Vẽ đường tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại hai điểm M, N nằm trong góc xOy. Chứng minh:

a/ tam giác OMA = tam giác OMB và tam giác ONA = tam giác ONB.

b/ 3 điểm O, M, N thẳng hàng.

c/ tam giác AMN = tam giác BMN. 

d/ MN là tia phân giác của góc AMB.

Bài 5: Cho tam giác ABC có AB = AC. Gọi D, E là 2 điểm trên cạnh BC sao cho BD = DE = EC. Biết AD = AE.

a/ Chứng minh: ÄABE = ÄACD.

b/ Gọi M là trung điểm của BC. Chứng minh rằng AM là tia phân giác của góc DAE.

c/ Giả sử góc DAE bằng 600, tính các góc còn lại của tam giác ADE.

d/ Chứng minh: AM vuông góc với BC.

Bài 6: Cho tam giác ABC. Vẽ đoạn thẳng AD vuông góc với AB (D và C nằm khác phía đối với AB) sao cho AD = AB. Vẽ đoạn thẳng AE vuông góc với AC (E và B nằm khác phía đối với AC) sao cho AE = AC. Biết DE = BC. Tính góc BAC.

Bài 7: Cho đoạn thẳng AB, điểm C cách đều hai điểm A và B, điểm D cách đều hai điểm A và B (C và D nằm khác phía đối với AB).

a/ Chứng minh: CD là tia phân giác của góc ACD.

b/ Kết quả câu a còn đúng không nếu C và D nằm cùng phía đối với AB?

chỉ cách giải các bài trên nhé, nhớ là KHÔNG chỉ đáp án nhé

p/s: có thể một số chỗ bị sai, mong những ai trả lời thông cảm

0

a: Xét ΔBAD và ΔBED có

BA=BE

\(\hat{ABD}=\hat{EBD}\) (BD là phân giác của góc ABE)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\hat{BAD}=\hat{BED}\)

=>\(\hat{BED}=90^0\)

=>DE⊥BC

mà AH⊥BC

nên DE//AH

c: Xét ΔMHA và ΔMDK có

MH=MD

\(\hat{MHA}=\hat{MDK}\) (hai góc so le trong, HA//DK)

HA=DK

Do đó: ΔMHA=ΔMDK

=>\(\hat{HMA}=\hat{DMK}\)

\(\hat{HMA}+\hat{AMD}=180^0\) (hai góc kề bù)

nên \(\hat{AMD}+\hat{DMK}=180^0\)

=>A,M,K thẳng hàng

30 tháng 8

Chúng ta sẽ giải từng câu hỏi trong bài toán này.

Câu a) Chứng minh ∆ABD = ∆EBD và AD = ED

  • Điều kiện:
    • ∆ABC vuông tại A (AB < AC).
    • Tia phân giác của góc B cắt AC tại D.
    • Trên cạnh BC lấy điểm E sao cho BE = BA.
    • Vẽ AH BC tại H.
  • Chứng minh:
  1. Xét các tam giác ∆ABD và ∆EBD:
    Vậy, theo Tiêu chuẩn góc-cạnh-góc (Axiom SAS), ta có:
    \(\Delta A B D = \Delta E B D\)
    • Cả hai tam giác ∆ABD và ∆EBD có cạnh chung BD.
    • AB = BE (do đề bài cho BE = BA).
    • Góc ABD = Góc EBD (vì tia BD là tia phân giác của góc ABC, nên hai góc này bằng nhau).
  2. Kết luận AD = ED:
    • Do ∆ABD = ∆EBD (theo chứng minh trên), nên các cạnh tương ứng của hai tam giác này cũng bằng nhau.
    • Vậy, AD = ED.

Câu b) Chứng minh AH // DE

  1. Xét đoạn AH và DE:
    • Từ điều kiện bài toán, chúng ta có điểm H là giao điểm của đường vuông góc AH với cạnh BC, tức là AH ⊥ BC.
    • Tia DE được dựng sao cho DE là một đoạn thẳng trong cùng một mặt phẳng với BC, và điểm D là điểm phân giác của góc B.
  2. Chứng minh AH // DE:
    • Vì ∆ABD = ∆EBD (chứng minh ở câu a) nên các góc tương ứng của hai tam giác này cũng bằng nhau. Đặc biệt, ∠BAD = ∠BED.
    • Ta có AH ⊥ BC và ∠BAD = ∠BED. Do đó, theo tính chất của góc tạo thành giữa đường vuông góc và đoạn thẳng, ta suy ra rằng AH // DE.

Câu c) Chứng minh A, M, K thẳng hàng

  1. Định nghĩa các điểm:
    • Trên tia DE, lấy điểm K sao cho DK = AH.
    • M là trung điểm của DH, tức là:
      \(\text{DM} = \text{MH}\)
  2. Chứng minh A, M, K thẳng hàng:
    • Ta đã biết rằng AH // DE, và từ câu b) đã chứng minh rằng AH và DE song song.
    • M là trung điểm của DH, tức là DM = MH. Đồng thời, ta có DK = AH (theo giả thiết).
    • Vì AH // DE và M là trung điểm của DH, ta có thể sử dụng tính chất của các đường trung tuyến trong tam giác vuông để suy ra rằng các điểm A, M, K nằm trên cùng một đường thẳng.

Kết luận:

  1. a) ∆ABD = ∆EBD và AD = ED.
  2. b) AH // DE.
  3. c) A, M, K thẳng hàng.