Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AB=(2;2)=(1;1)
=>VTPT là (-1;1)
Phương trình tham số AB là: \(\left\{{}\begin{matrix}x=-1+t\\y=0+t=t\end{matrix}\right.\)
Phương trình tổng quát của AB là:
-1(x+1)+1(y-0)=0
=>-x-1+y=0
=>x-y+1=0
b: vecto BC=(2;0)
Vì AH vuông góc BC
nên AH nhận vecto BC làm vtpt và đi qua A
=>AH: 2(x+1)+0(y-0)=0
=>2x+2=0
=>x=-1
c: Tọa độ M la:
x=(-1+3)/2=2/2=1 và y=(0+2)/2=1
B(1;2); M(1;1)
vecto BM=(0;-1)
=>VTPT là (1;0)
Phương trình BM là:
1(x-1)+0(y-2)=0
=>x-1=0
=>x=1
a: vecto AC=(4;-4)=(1;-1)
Phương trìh tham số là:
x=-1+t và y=2-t
b: Tọa độ N là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+3}{2}=\dfrac{2}{2}=1\\y=\dfrac{2-2}{2}=0\end{matrix}\right.\)
N(1;0); B(-2;-1)
vecto BN=(3;1)
Phương trình tham số là:
x=1+3t và y=0+t=t
c: vecto BC=(5;-1)
=>vecto AH=(1;5)
Phương trình tham số AH là:
x=-1+t và y=2+5t
a: BC: x+y+4=0
=>AH: -x+y+c=0
Thay x=-1 và y=-2 vào AH, ta được:
c+1-2=0
=>c=1
=>-x+y+1=0
=>x-y-1=0
b: BC: x+y+4=0
=>B(x;-x-4)
Tọa độ M là:
xM=(x-1)/2 và yM=(-x-4-2)/2=(-x-6)/2
BC: x+y+4=0
=>MN: x+y+c=0
Thay xM=(x-1)/2 và yM=(-x-6)/2 vào MN, ta được:
\(\dfrac{x-1}{2}+\dfrac{-x-6}{2}+c=0\)
=>c+(1/2x-1/2-1/2x-3)=0
=>c=7/2
=>x+y+7/2=0
1.
Đường thẳng song song d nên nhận \(\left(2;3\right)\) là 1 vtpt
Phương trình: \(2\left(x-1\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y-5=0\)
b.
\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)
\(=\dfrac{1}{2}\left|-2.2-3.1\right|=\dfrac{7}{2}\)
c.
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{5}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\dfrac{1}{2};\dfrac{3}{2}\right)=\dfrac{1}{2}\left(1;3\right)\)
Pt tham số: \(\left\{{}\begin{matrix}x=1+t\\y=1+3t\end{matrix}\right.\)
d. Phương trình:
\(2\left(x-1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-3=0\)
`a)` Vì `AM` là đường trung tuyến của `\triangle ABC`
`=>M` là trung điểm của `BC`
`=> M ( 1 ; -2 )`
Ta có: `\vec{AM} = ( -1 ; -2 )`
`=>\vec{n_[AM]} = ( 2 ; -1 )`
Mà `A ( 2 ; 0 ) in AM`
`=>` Ptr đường trung tuyến `AM` là: `2 ( x - 2 ) - ( y - 0 ) = 0`
`<=> 2x - y - 4 = 0`
________________________________________________________
`b)` Ta có: `\vec{AC} = ( -2 ; -1 )`
Gọi ptr đường thẳng vuông góc với `AC` là `\Delta`
`=>` Ptr `\Delta` là: `-2x - y + c = 0`
`d ( B , \Delta ) = \sqrt{5}`
`=> [ | -2 . 2 - (-3) + c | ] / \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}`
`<=> | c - 1 | = 5`
`<=> c = 6` hoặc `c = -4`
`=>` Ptr `\Delta` là: `-2x - y + 6 = 0`
hoặc `-2x - y - 4 = 0`
Bài 1:
\(\overrightarrow{BC}=\left(-1;4\right)\)
Gọi đường cao xuất phát từ A là AH
Do \(AH\perp BC\Rightarrow\) đường thẳng AH nhận \(\overrightarrow{n_{AH}}=\left(-1;4\right)\) là 1 vtpt
Phương trình AH:
\(-1\left(x+1\right)+4\left(y-2\right)=0\Leftrightarrow-x+4y-9=0\)
Hai đường cao còn lại viết tương tự, bạn tự giải
b/ Gọi \(M\) là trung điểm BC \(\Rightarrow M\left(\frac{3}{2};-2\right)\)
Do đường trung trực của BC vuông góc BC nên nhận \(\overrightarrow{n}=\left(-1;4\right)\) là 1 vtpt
Phương trình đường trung trực BC:
\(-1\left(x-\frac{3}{2}\right)+4\left(y+2\right)=0\Leftrightarrow-x+4y+\frac{19}{2}=0\)
Hai đường trung trực còn lại viết tương tự
Bài 2:
\(\overrightarrow{AB}=\left(2;6\right)\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(3;-1\right)\) là 1 vtpt
Phương trình AB:
\(3\left(x-1\right)-1\left(y-0\right)=0\Leftrightarrow3x-y-3=0\)
b/
Gọi phương trình đường thẳng d có dạng \(ax+by+c=0\)
Do d qua A \(\Rightarrow a.1+b.0+c=0\Leftrightarrow a+c=0\Rightarrow c=-a\)
Thay vào pt ban đầu: \(ax+by-a=0\)
Áp dụng công thức khoảng cách ta có:
\(d\left(B;d\right)=\frac{\left|3a+6b-a\right|}{\sqrt{a^2+b^2}}=2\)
\(\Leftrightarrow\left|2a+6b\right|=2\sqrt{a^2+b^2}\Leftrightarrow\left|a+3b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow a^2+6ab+9b^2=a^2+b^2\Leftrightarrow6ab+8b^2=0\)
\(\Leftrightarrow2b\left(3a+4b\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\b=-\frac{3a}{4}\end{matrix}\right.\)
Có hai đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}ax+0.y-a=0\\ax-\frac{3}{4}a.y-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-\frac{3}{4}y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-3y-4=0\end{matrix}\right.\)