Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh : BHCK là hình bình hành
Xét tứ giác BHCK có : MH = MK = HK/2
MB = MI = BC/2
Suy ra : BHCK là hình bình hành
b) BK vuông góc AB và CK vuông góc AC
Vì BHCK là hình bình hành ( cmt )
Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )
mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )
Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )
c) Chứng minh : BIKC là hình thang cân
Vì I đối xứng với H qua BC nên BC là đường trung bình của HI
Mà M thuộc BC Suy ra : MH = MI ( tính chất đường trung trực )
mà MH = MK = HK/2 (gt)
Suy ra : MI = MH = MK = 1/2 HC
Suy ra : Tam giác HIK vuông góc tại I
mà BC vuông góc HI (gt)
Suy ra : IC // BC
Suy ra : BICK là hình thang (1)
Ta có : BC là đường trung trực của HI (cmt)
Suy ra : CI = CH
Tiếp ý c
mà CH = BK ( vì BKCH là hình bình hành)
Suy ra : BK = CI (2)
Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )
d) Giả sử GHCK là hình thang cân
Suy ra : Góc HCK = Góc GHC
mà góc HCK + góc C1 = 90 độ
góc GHC + góc C2 = 90 độ
Suy ra : Góc C1= góc C2
Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC
Suy ra : Tam giác ABC cân tại C
a) Tứ giác BHCkBHCk có 2 đường chéo BCBC và HKHK cắt nhau tại trung điểm MM của mỗi đường
⇒BHCK⇒BHCK là hình bình hành.
b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC
Mà HC⊥ABHC⊥AB
⇒BK⊥AB⇒BK⊥AB (đpcm)
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BCHD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
...
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a) Tứ giác BHCKBHCK có 2 đường chéo HKHK và BCBC cắt nhau tại trung điểm MM của mỗi đường
Do đó tứ giác BHCKBHCK là hình bình hành
b) Tứ giác BHCKBHCK là hình bình hành
⇒BK∥CH⇒BK∥CH
Mà CH⊥ABCH⊥AB
⇒BK⊥AB⇒BK⊥AB (đpcm)
c) Gọi J=BC∩HIJ=BC∩HI
Xét ΔBHIΔBHI có BJBJ vừa là đường trung tuyến, vừa là đường cao nên ΔBHIΔBHI cân đỉnh B
⇒BJ⇒BJ là đường phân giác của ˆHBIHBI^
⇒ˆIBC=ˆHBC⇒IBC^=HBC^
mà ˆHBC=ˆKCBHBC^=KCB^ (hai góc ở vị trí so le trong do BH//CK)
Từ 2 điều trên ⇒ˆIBC=ˆKCB⇒IBC^=KCB^ (*)
ΔHIKΔHIK có JMJM là đường trung bình của tam giác, nên JM//IKJM//IK
Hay BC//IK⇒BIKCBC//IK⇒BIKC là hình thang (**)
Từ (*) và (**) suy ra BIKCBIKC là hình thang cân.
d) Tứ giác GHCKGHCK có GK∥HCGK∥HC
Do đó GHCKGHCK là hình thang
Để GHCKGHCK là hình thang cân thì ˆGHC=ˆKCHGHC^=KCH^
mà ˆKCH=ˆHBKKCH^=HBK^ (hai góc cùng bù ˆBHCBHC^ do BHCKBHCK là hình bình hành)
Từ hai điều trên ⇒ˆGHC=ˆHBK⇒GHC^=HBK^
ΔHJC:ˆHCJ=90o−ˆGHCΔHJC:HCJ^=90o−GHC^ (tổng ba góc trong tam giác bằng 180o180o)
ˆABH=ˆABK−ˆHBK=90o−ˆHBKABH^=ABK^−HBK^=90o−HBK^ (BK⊥ABBK⊥AB)
Từ 3 điều trên suy ra ˆHCJ=ˆABHHCJ^=ABH^
Mà ΔBCF:ˆFBC=90o−ˆHCJΔBCF:FBC^=90o−HCJ^
ΔABE:ˆEAB=90o−ˆABHΔABE:EAB^=90o−ABH^
Từ 3 điều trên ⇒ˆFBC=ˆEAB⇒FBC^=EAB^
hay ˆCBA=ˆCABCBA^=CAB^
⇒ΔABC⇒ΔABC cân đỉnh CC
ΔABCΔABC cân đỉnh CC thì GHCKGHCK là hình thang cân.
Cảm ơn bạn