K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

a, Do \(NA=NB=\frac{1}{2}AB\)

\(AM=MC=\frac{1}{2}AC\)

Mà \(AB=AC\)\(\Rightarrow NA=MA;NB=MC\)\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)

b, Xét \(\Delta ANC\)và \(\Delta AMB\)có:

\(\widehat{BAC}chung\)

\(AB=AC\)

\(AN=AM\)(câu a)

\(\Rightarrow\Delta ANC=\Delta AMB\)

\(\Rightarrow BM=CN\)

c, Xét \(\Delta NBC\) và\(\Delta MCB\) có:

\(BCchung\)

NB = MC ( câu a)

NC = MB ( câu b)

=>\(\Delta NBC=\Delta MCB\)=>\(\widehat{GBC}=\widehat{GCB}\)=>\(\Delta GBC\) cân tại C

TYM cho chị nhé <3

A B C M N E I

a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)

\(\Rightarrow\) \(AB=AC\)  hay \(\frac{1}{2}AB=\frac{1}{2}AC\)  và   \(BM\)\(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)

\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)

Xét \(\Delta AMN\)\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)

b)Có 

  • \(M\)là trung điểm của \(AC\)(do \(BM\)là đường trung tuyến )
  • \(N\)là trung điểm của \(AB\)(....)

\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN//BC\left(dpcm\right)\)

1 tháng 11 2021

A B C M N I E

a)

*AMN cân

Vì t/g ABC cân tại A (gt)

=>^B=^C

Do đó: ^ABM=^ACN

Xét t/ABM và t/gACN có

góc ^A chung

AB=AC ( vì t/g ABC cân)

^ABM=^ACN (cmt)

Nên t/gABM=t/gACN (g.c.g)

=>AM=AN (2 cạnh tương ứng = nhau)

=> tam giác ANM cân

*MN//BC

Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o

      tam giác ABC cân nên=>^A+^B+^C=180o

Mà ^B=^C 

      ^ANM=^AM 

Nên: ^C=^ANM

=>^MCN=^ANM

Mà 2 góc này lại ở vị trí so le trong

Do đó MN//BC (đpcm)

b) 

Vì t/g ABC cân tại A

^ABC=^ACB

Mà BM là tia p/g của ^ABC

      CN là tia p/g của ^ACB

do đó: ^MBC=^NCB

=> tam giác EBC cân tại E

Xét t/g AEB và t/g AEC có:

AB=AC (vì t/g ABC cân)

^ABM=^ACN (cmt)

=BE=CE (EBC cân)

=> t/gAEB=t/gAEC(c.g.c)

=>^BAE=^CAE (2 góc tương ứng = nhau)

Do đó AE là tia phân giác của t/gBAC (1)

Xét t/g AIB và t/gAIC có

AB=AC ( vì t/g ABC cân)

IB=IC (I là trung điểm BC)

=>tam giác AIB=t/gAIC (c.g.c)

=>^IAB=^IAC (2 góc tương ứng = nhau)

Do đó:AI là tia phân giác của ^BAC (2)

Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.a,CM:BD=DEb,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CEDc,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND când,CM: DN và CK cắt nhau tại trung điểm mỗi đườngBài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của...
Đọc tiếp

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.

a,CM:BD=DE

b,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CED

c,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND cân

d,CM: DN và CK cắt nhau tại trung điểm mỗi đường

Bài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của AK 

a,CM:Tam giác ABK cân và Tam giác ACK cân

b,Qua A kẻ tia Ax song song BC, qua C kẻ tia Cy song song AH. Tia Ax cắt Cy tại E . CM:AH =CE và AE vuông góc CE

c,Gọi giao điểm của AC và HE là I; CH và IK là Q . M là trung điểm của KC.CM:A;Q;M thẳng hàng

d,Tìm điều kiện của Tam giác ABC để AB song song QK

Bài 3: Cho Tam giác ABC cân tại A. Kẻ AH vuông góc BC(H thuộc BC)

a,CM: Tam giác ABH=Tam giác ACH và AH là đường trung trực của AC

b,Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM= CN.CM:MA=NA

c,Kẻ BD vuông góc AM (D thuộc AM). CE vuông góc AN (E thuộc AN). CM:Tam giác ADE cân và DE song song MN

d,CM:Ba đường thẳng BD ;AH; CE cung đi qua 1 điểm

Các bạn giúp mình với . 6h là mình phải nộp rồi

Bạn nào nhanh thì mình tích cho

Giúp mình nhanh nha

 

 

2
1 tháng 4 2020

A B C D E K N

XÉT TAM GIÁC ABD VÀ TAM GIÁC AED 

BA=EA ( GT)

\(\widehat{BAD}=\widehat{EAD}\)( GT)

AD-CẠNH CHUNG

=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)

=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2  góc tương ứng )

b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)

   cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)

  mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)

=> \(\widehat{KBD}=\widehat{CED}\)

XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :

\(\widehat{KBD}=\widehat{CED}\)(CMT)

BD=ED ( CMT)

\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )

=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)

=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)

c) 

vì \(BC//KN\)(GT)

=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )

MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA  KD VÀ NC 

=> KD//NC

=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)

XÉT TAM GIÁC KDN VÀ TAM GIÁC CND

\(\widehat{KDN}=\widehat{CND}\)( CMT)

DN-CẠNH CHUNG

\(\widehat{CDN}=\widehat{DNK}\)(CMT)

=> TAM GIÁC KDN = TAM GIÁC CND

=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)

LẠI CÓ DC= DK ( CMT )

=> KN=DK

XÉT TAM GIÁC KDN:KN=DK

=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)

1 tháng 4 2020

ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!

Bài 3.Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm M. Qua M kẻ đường thẳng song song với BC cắt AC tại N. Chứng minh :   a)Tam giác AMN cân                     b) BN = MC            c) ⧍BMN = ⧍CNM   d) Gọi I là giao điểm của BN và CM.Chứng minh: ⧍BMI = ⧍CNI   e) Lấy D là trung điểm của BC. Chứng minh ba điểm A; I; D thẳng hàng.Bài 4. Cho tam giác ABC vuông tại A, CM là phân giác...
Đọc tiếp

Bài 3.Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm M. Qua M kẻ đường thẳng song song với BC cắt AC tại N. Chứng minh :

   a)Tam giác AMN cân                     b) BN = MC            c) ⧍BMN = ⧍CNM

   d) Gọi I là giao điểm của BN và CM.Chứng minh: ⧍BMI = ⧍CNI

   e) Lấy D là trung điểm của BC. Chứng minh ba điểm A; I; D thẳng hàng.

Bài 4. Cho tam giác ABC vuông tại A, CM là phân giác của góc ACB ( M € AC).Kẻ MN vuông góc với BC ( N € BC).

  a)Chứng minh : ⧍ACM = ⧍NCM

  b)Đường thẳng MN và AC cắt nhau tại P.Chứng minh : ⧍MBP cân.

  c)Gọi I là giao điểm của CM và BP. Trên tia đối của tia IC lấy điểm Q sao cho

 IC = IQ.Chứng minh : QB vuông góc với AB.

  d)So sánh chu vi của tam giác MBQ với chu vi tam giác MAC.

 

2
7 tháng 4 2020

a) Có tam giác ABC cân tại A => AB=AC

M thuộc AB, N thuộc AC và MN//BC

=> AM=AN

=> Tam giác AMN cân tại A

b) Xét tứ giác BMNC có MN//BC

=> BMNC là hình thang

Xét hình thang BMNC có
AM=AN và AB=AC => MN=NC

=> Hình thang BMNC cân 

=> BN=CM (tính chất hình thang cân)

c) Xét tam giác BMN và tam giác CNM có:

BN chung

\(\widehat{MNB}=\widehat{NBC}\) (MN//BC)

BM=MC (cmt)

=> Tam giác BMN=Tam giác CNM (cgc)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

7 tháng 2 2020

Những câu trên hơi vô lí tí nên mình vẽ hình ra ! Câu a, b, c đều vô lí !

A B C M N E F H p

25 tháng 1 2020

Hình bạn tự vẽ nha :))

a)* Ta có: \(\Delta ABC\)cân tại A <=> AB=AC

\(\hept{\begin{cases}AM=AB+MB\\AN=AC+NC\end{cases}\Rightarrow AM=AN}\)(do \(AB=AC;MB=NC\))

\(\Rightarrow\Delta AMN\)cân tại A

Từ \(\Delta ABC\)cân tại A, có: \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(1)

Từ \(\Delta AMN\)cân tại A, có: \(\widehat{AMN}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2), suy ra: \(\widehat{ABC}=\widehat{AMN}\)

\(\Rightarrow MN//BC\)(2 góc đồng vị bằng nhau)

b) Xét \(\Delta ABI\)và \(\Delta ACI\)có:

\(\hept{\begin{cases}AB=AC\\AIchung\\IB=IC\end{cases}\Rightarrow\Delta ABI=\Delta}ACI\left(ccc\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)(2 góc tương ứng)      

\(\Rightarrow AI\)là p/giác của \(B\widehat{A}C\) (3)

Tương tự, ta có: \(\widehat{MAE}=\widehat{NAE}\)

\(\Rightarrow AE\)là p/ giác của \(\widehat{BAC}\)(4)

Từ (3) và (4), ta có: A,I,E thẳng hàng

21 tháng 1 2020

A N M B C I E

Ta có \(\Delta ABC\)cân tại A

=> AB = AC 

và \(\widehat{ABC}=\widehat{ACB}\)

Lại có \(\hept{\begin{cases}\widehat{ABM}=\widehat{MBC}\\\widehat{ACN}=\widehat{BCN}\end{cases}}\left(gt\right)\)

=> \(\widehat{ABC}-\widehat{MBC}=\widehat{ACB}-\widehat{BCN}\)

=> \(\widehat{ABM}=\widehat{ACN}\)

+) Xét \(\Delta AMC\)và \(\Delta ANB\)

 \(\widehat{A}\) : chung

AC= AB (cmt)

\(\widehat{ABM}=\widehat{ACN}\)  (cmt)

=> \(\Delta AMC\)=  \(\Delta ANB\)  (g-c-g)

=> AM= AN  ( 2 canh tương ứng)

=> \(\Delta AMN\) cân tại A

21 tháng 1 2020

b, Theo câu a, ta có :

\(\widehat{ANM}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)  

Lại có \(\Delta ABC\) cân tại A

=> \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ANM}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

=> MN // BC

Xin lỗi nhé mình chưa nghĩ ra câu c