Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
2 Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
a) Xét tam giác ABC và tam giác HBA có:
\(\widehat{BAC}=\widehat{BHA}=90^o\)
Góc B chung
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)
b)
Xét tam giác ABC và tam giác HAC có:
\(\widehat{BAC}=\widehat{AHC}=90^o\)
Góc C chung
\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)
c) Từ câu a và b ta có : \(\Delta HBA\sim\Delta HAC\)
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow HA^2=HB.HC=9.16=144\)
\(\Rightarrow HA=12\left(cm\right)\)
Khi đó áp dụng định lý Pi-ta-go ta có:
\(AB^2=BH^2+AH^2=9^2+12^2\Rightarrow AB=15\left(cm\right)\)
\(AC^2=CH^2+AH^2=16^2+12^2\Rightarrow AC=20\left(cm\right)\)
BC = BH + HC = 9 + 16 = 25 (cm)
Áp dụng tính chất tia phân giác trong tam giác ta có:
\(\frac{AE}{EC}=\frac{AB}{BC}=\frac{15}{25}=\frac{3}{5}\)
\(\Rightarrow AE=\frac{3}{8}\times20=7,5\left(cm\right)\)
\(\Rightarrow EC=20-7,5=12,5\left(cm\right)\)
a)Xét \(\Delta BEC\)vuông và \(\Delta BDA\)vuông, ta có:
Góc B : chung (gt)
Góc BEC = Góc BDA (gt)
\(\Rightarrow\Delta BEC\infty\Delta BDA\left(g.g\right)\)
b) Xét \(\Delta DHC\)vuông và \(\Delta DCA\)vuông, ta có:
Góc D: chung (gt)
Cạnh DC: chung (gt)
\(\Rightarrow\Delta DHC\infty\Delta DCA\left(g.c\right)\)
\(\Rightarrow\frac{DH}{DC}=\frac{DC}{DA}\Rightarrow DC^2=DH.DA\)
c) Ta có: \(\Delta EAC\)vuông, áp dụng định lí Pytago:
\(EC=\sqrt{AC^2-AE^2}=\sqrt{100-64}=\sqrt{36}=6cm\)
Xét \(\Delta AHE\)vuông và \(\Delta CBE\)vuông, ta có:
Góc CEB = góc AEH (gt)
Góc CHD = góc AHE (2 góc đối đỉnh)
\(\Rightarrow\Delta AHE\infty\Delta CBE\left(g.g\right)\)
mà \(AE+EB=AB\Rightarrow EB=AB-AE=10-8=2cm\)
\(\Rightarrow\frac{HE}{BE}=\frac{AE}{CE}\Rightarrow EH=\frac{BE.AE}{CE}=\frac{2.8}{6}=\frac{8}{3}cm\)
ta có: \(CH+HE=CE\Rightarrow CH=CE-HC=6-\frac{8}{3}=\frac{10}{3}cm\)
ủa bạn cho mình hỏi góc chd = góc ahe thì có liên quan gì tới nhau đâu ?