Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
góc B chung
Do đó: ΔBEC\(\sim\)ΔBDA
b: Xét ΔDHC vuông tại D và ΔDCA vuông tại D có
\(\widehat{DCH}=\widehat{DAC}\)
Do đó: ΔDHC\(\sim\)ΔDCA
Suy ra: DH/DC=DC/DA
hay \(DC^2=DH\cdot DA\)

Bài 1 : Bài giải
A B C D E F O
a, Trong \(\Delta ABC\) vuông tại A có :
\(AB^2+AC^2=BC^2\text{ }\Rightarrow\text{ }9^2+12^2=81+144=225=BC^2\text{ }\Rightarrow\text{ }BC=5\text{ }cm\)
b, Vì BD là đường phân giác \(\widehat{ABC}\) nên : \(\widehat{B_1}=\widehat{B_2}\)
Xét 2 tam giác \(\Delta ABD\) vuông tại A và \(\Delta AED\) vuông tại E có :
\(BD\) : cạnh huyền - cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( cmt )
\(\Rightarrow\text{ }\Delta ABD=\Delta AED\text{ }\left(ch-gn\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
\(\Rightarrow\text{ }\Delta DAE\text{ cân }\)
c, Trong \(\Delta DEC\text{ }\) vuông tại E có : DC là cạnh đối diện với \(\widehat{E}\) nên \(DC\) là cạnh có độ dài lớn nhất \(\Rightarrow\text{ }DE< DC\)
Mà \(DA=DE\text{ nên }DA< DC\)
d, Vì \(\hept{\begin{cases}DE\text{ }\perp\text{ }BC\\BF\text{ }\perp\text{ }CF\\AB\text{ }\perp\text{ }AC\end{cases}}\text{ }\Rightarrow\text{ }DE\text{ , }AB\text{ và }BF\text{ là đường cao của }\Delta OBC\)
\(\Rightarrow\text{ }AB\text{, }DE\text{ và }CF\text{ đồng quy tại 1 điểm}\)
A B C H D E 10cm 8cm
a)Xét \(\Delta BEC\)vuông và \(\Delta BDA\)vuông, ta có:
Góc B : chung (gt)
Góc BEC = Góc BDA (gt)
\(\Rightarrow\Delta BEC\infty\Delta BDA\left(g.g\right)\)
b) Xét \(\Delta DHC\)vuông và \(\Delta DCA\)vuông, ta có:
Góc D: chung (gt)
Cạnh DC: chung (gt)
\(\Rightarrow\Delta DHC\infty\Delta DCA\left(g.c\right)\)
\(\Rightarrow\frac{DH}{DC}=\frac{DC}{DA}\Rightarrow DC^2=DH.DA\)
c) Ta có: \(\Delta EAC\)vuông, áp dụng định lí Pytago:
\(EC=\sqrt{AC^2-AE^2}=\sqrt{100-64}=\sqrt{36}=6cm\)
Xét \(\Delta AHE\)vuông và \(\Delta CBE\)vuông, ta có:
Góc CEB = góc AEH (gt)
Góc CHD = góc AHE (2 góc đối đỉnh)
\(\Rightarrow\Delta AHE\infty\Delta CBE\left(g.g\right)\)
mà \(AE+EB=AB\Rightarrow EB=AB-AE=10-8=2cm\)
\(\Rightarrow\frac{HE}{BE}=\frac{AE}{CE}\Rightarrow EH=\frac{BE.AE}{CE}=\frac{2.8}{6}=\frac{8}{3}cm\)
ta có: \(CH+HE=CE\Rightarrow CH=CE-HC=6-\frac{8}{3}=\frac{10}{3}cm\)
ủa bạn cho mình hỏi góc chd = góc ahe thì có liên quan gì tới nhau đâu ?