K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN//BP và MN=BP

=>BMNP là hình bình hành

b: Xét tứ giác AKBH có 

M là trung điểm của HK

M là trung điểm của AB

Do đó: AKBH là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AKBH là hình chữ nhật

c: Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình

=>MP=AC/2(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2(2)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//PH

nên MNPH là hình thang

mà MP=NH

nên MNPH là hình thang cân

22 tháng 10 2023

a: Xét tứ giác APCQ có

N là trung điểm chung của AC và PQ

nên APCQ là hình bình hành

=>AQ//CP và AQ=CP

AQ=CP

CP=PB

Do đó: AQ=BP

AQ//CP

mà B thuộc tia đối của tia CP

nên AQ//BP

Xét tứ giác AQPB có

AQ//PB

AQ=PB

Do đó: AQPB là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC

=>MN//HP

Xét ΔABC có

M,P lần lượt là trung điểm của BA,BC

=>MP là đường trung bình

=>MP//AC và MP=AC/2(1)

ΔAHC vuông tại H

mà HN là đường trung tuyến

nên \(HN=\dfrac{AC}{2}\)(2)

Từ (1),(2) suy ra MP=HN

Xét tứ giác MNPH có

MN//PH

MP=HN

Do đó: MNPH là hình thang cân

13 tháng 11 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hthang

b, Vì M,P là trung điểm AB,BC nên MP là đtb tg ABC

Do đó MP//AC hay MP//AN và \(MP=\dfrac{1}{2}AC=AN\)

Do đó AMPN là hbh

c, Vì M là trung điểm KH và AB nên AKBH là hbh

Mà \(\widehat{AHB}=90^0\) nên AKBH là hcn

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

5 tháng 11 2021

cho thêm câu c

 

12 tháng 1 2022

a) Xét tam giác ABC:

+ M là trung điểm của AB (gt).

+ N là trung điểm của AC (gt).

\(\Rightarrow\) MN là đường trung bình.

\(\Rightarrow\) MN // BC (Tính chất đường trung bình).

Xét tứ giác BMNC:

MN // BC (cmt).

\(\Rightarrow\) Tứ giác BMNC là hình thang.

b) Xét tứ giác AIBP:

+ M là trung điểm của AB (gt).

+ M là trung điểm của PI (P là điểm đối xứng của I qua M).

\(\Rightarrow\) Tứ giác AIBP là hình bình hành (dhnb).

Mà \(\widehat{AIB}=90^o\left(AI\perp BC\right).\)

\(\Rightarrow\) Tứ giác AIBP là hình chữ nhật (dhnb).

c) Xét tam giác ABC: MN là đường trung bình (cmt).

\(\Rightarrow\) MN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình).

Mà BK = KC = \(\dfrac{1}{2}\) BC (K là trung điểm của BC).

\(\Rightarrow\) MN = BK = KC = \(\dfrac{1}{2}\) BC.

Xét tứ giác MNKB:

+ MN = BK (cmt).

+ MN // BK (MN // BC).

\(\Rightarrow\) Tứ giác MNKB là hình bình hành (dhnb).

\(\Rightarrow\) \(\widehat{MNK}=\widehat{MBK}\) (Tính chất hình bình hành).​

Mà \(\widehat{MBK}=\widehat{MIB}\) (Tứ giác AIBP là hình chữ nhật).

\(\Rightarrow\widehat{MNK}=\widehat{MIB}.\)

Lại có: \(\widehat{MIB}=\widehat{IMN}\) (MN // BC).

\(\Rightarrow\widehat{MNK}=\widehat{IMN}.\)

Xét tứ giác MNKI: MN // KI (MN // BC).

\(\Rightarrow\) Tứ giác MNKI là hình thang.

Mà \(\widehat{IMN}=\widehat{MNK}\left(cmt\right).\)

\(\Rightarrow\) Tứ giác MNKI là hình thang cân.

\(\Rightarrow\) \(\widehat{MIN}=\widehat{MKN.}\)

12 tháng 1 2022

giup voi moi nguoi

18 tháng 12 2021

a: Xét ΔABC  có 

D là tđiểm của AB

E là tđiểm của AC

Do đó: DE là đường trung bình

=>DE//FC và DE=FC

hay DECF là hình bình hành

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

30 tháng 12 2020

Bn tự vẽ hình nha

a, Xét tứ giác ABCD có

MA=MC=1/2AC( m là trung điểm AC-gt)

MB=MD=1/2BD(B đối D qua M-gt)

Mà BD cắt AC tại M

-> ABCD là hình bình hành

31 tháng 12 2020

undefined 

a) Do B và D đối xứng qua M

\(\Rightarrow\) M là trung điểm BD

Tứ giác ABCD có:

M là trung điểm AC (gt)

M là trung điểm BD (cmt)

\(\Rightarrow\) ABCD là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

b) Do ABCD là hình bình hành

\(\Rightarrow\) AB // CD và AB = CD

\(\Rightarrow\) AN // CD

Do B và N đối xứng nhau qua A

\(\Rightarrow AN=AB\)

Mà AB = CD (cmt)

\(\Rightarrow\) AN = CD

Do AB \(\perp\) AC (\(\Delta ABC\) vuông tại A)

\(\Rightarrow AN\perp AC\)

\(\Rightarrow\widehat{CAN}=90^0\)

Tứ giác ACDN có:

AN // CD (cmt)

AN = CD (cmt)

\(\Rightarrow ACDN\) là hình bình hành

\(\widehat{CAN}=90^0\)

\(\Rightarrow ACDN\) là hình chữ nhật (hình bình hành có một góc vuông)

c) Gọi E là giao điểm của MN và BC

Do AK // MN (gt)

\(\Rightarrow AK\) // ME và AK // NE

\(\Delta BNE\)

AK // NE

A là trung điểm BN

\(\Rightarrow\) K là trung điểm BE

\(\Rightarrow KB=KE\)

\(\Delta AKC\) có:

AK // ME (cmt)

M là trung điểm AC

\(\Rightarrow\) E là trung điểm CK

\(\Rightarrow\) KC = 2 KE

Mà KB = KE (cmt)

\(\Rightarrow\) KC = 2 KB