Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
gọi H là chân đường cao hạ từ A
ta có : \(AB^2+BC^2+CA^2=AH^2+BH^2+BC^2+AH^2+CH^2=2AH^2+\left(BH^2+CH^2\right)+BC^2\)
ÁP DỤNG BẤT ĐẲNG THỨC : \(2\left(a^2+b^2\right)>\left(a+b\right)^2\)ta có:
\(2\left(BH^2+CH^2\right)\ge\left(BH+CH\right)^2=BC^2\)
\(\Leftrightarrow\left(BH^2+CH^2\right)\ge\frac{BC^2}{2}\)
\(\Rightarrow AB^2+BC^2+CA^2\ge2AH^2+BC^2+\frac{BC^2}{2}=2AH^2+\frac{3}{2}BC^2\)
ÁP DỤNG BẤT ĐẲNG THỨC CAUCHY:\(2AH^2+\frac{3}{2}BC^2\ge2\sqrt{2AH^2\cdot\frac{3}{2}BC^2}=2\sqrt{3}AH\cdot BC=4\sqrt{3}S_{ABC}\)
Ta có S m-n = (√2 + 1)m /(√2 + 1)n + (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n
Từ đó
S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n
= (√2 + 1)m [(√2 + 1)n + (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]
= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]
= S m .S n
sorry mk ko bít!!! ^^
6476575756876982525435465658768768676968256346564576576576
\(B1,1,S_{3n}+3S_n=\left(2-\sqrt{3}\right)^{3n}+\left(2+\sqrt{3}\right)^{3n}+3\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)
\(=\left[\left(2-\sqrt{3}\right)^n\right]^3+\left[\left(2+\sqrt{3}\right)^n\right]^3\)
\(+3\left[\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\right]^n\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)
Ta có hằng đẳng thức \(a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)
Ở đây với \(a=\left(2-\sqrt{3}\right)^n\)và \(b=\left(2+\sqrt{3}\right)^n\)
Nên \(S_{3n}+3S_n=\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]^3=S_n^3\)
\(2,S_3=\left(2-\sqrt{3}\right)^3+\left(2+\sqrt{3}\right)^3\)
\(=\left(2-\sqrt{3}+2+\sqrt{3}\right)\left(2-\sqrt{3}-\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)+2+\sqrt{3}\right)\)
\(=4\left[4-\left(4-3\right)\right]\)
\(=12\)
Ta có \(S_4=\left(2-\sqrt{3}\right)^4+\left(2+\sqrt{3}\right)^4\)
\(=\left[\left(2-\sqrt{3}\right)^2\right]^2+\left[\left(2+\sqrt{3}\right)^2\right]^2\)
\(=\left(7-4\sqrt{3}\right)^2+\left(7+4\sqrt{3}\right)^2\)
\(=97-56\sqrt{3}+97+56\sqrt{3}\)
\(=194\)
\(B2,F=x^4+6x^3+13x^2+12x+12\)(Bài này cẩn thận dấu "=")
\(=\left(x^4+6x^3+9x^2\right)+4x^2+12x+12\)
\(=\left(x^2+3x\right)^2+4\left(x^2+3x\right)+4+8\)
\(=\left(x^2+3x+2\right)^2+8\ge8\)
Dấu "=" tại \(x^2+3x+2=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)