K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

Vũ™©®×÷|

a: Để A là số tự nhiên thì 8n+6+187 chia hết cho 4n+3

=>\(4n+3\in\left\{1;-1;11;-11;17;-17;187;-187\right\}\)

mà n>0

nên \(n\in\left\{2;46\right\}\)

c: \(A=\dfrac{8n+6+187}{4n+3}=2+\dfrac{187}{4n+3}\)

Để A rút gọn được thì ƯCLN(8n+193;4n+3)<>1

mà 150<=n<=170

nên \(n\in\left\{156;165;167\right\}\)

9 tháng 3 2021

a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)

Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)

\(4n+3=11\Leftrightarrow n=2\)

\(4n+3=187\Leftrightarrow n=46\)

\(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))

Vậy n=2, 46

b) A tối giản khi 187 và 4n+3 có ƯCLN =1

\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)

\(n\ne17m+12\left(m\inℕ\right)\)

c) \(n=156\Rightarrow A=\frac{17}{19}\)

\(n=165\Rightarrow A=\frac{89}{39}\)

\(n=167\Rightarrow A=\frac{139}{61}\)

21 tháng 3 2021

Làm thế này mới đúng

22 tháng 4 2015

a A=\(\frac{4n+3+4n+3+187}{4n+3}\)

  A=2+\(\frac{187}{4n+3}\)

suy ra để A là một số nguyên và 187 phải chia hết cho 4n+3

   suy ra 4n+3 thuộc ước của 187 

Ư(187)= ( 11,17)

suy ra 4n=8;14

vậy n=2

22 tháng 4 2015

a, A=\(\frac{8n+193}{4n+3}\)

   A=\(\frac{4n+3+4n+3+187}{4n+3}\)

   A=\(\frac{\left(4n+3\right).2}{4n+3}\)+\(\frac{187}{4n+3}\)

   A= 2+\(\frac{187}{4n+3}\)

   suy ra \(\frac{187}{4n+3}\)là một số nguyên và 187 phải chia hết cho 4n+3

   \(\Rightarrow\)4n+3 thuộc ước của 187 

Ư(187)= ( 11,17)

suy ra 4n=8;14

vậy n=2

 

6 tháng 8 2020

Bg

a) Ta có: B = \(\frac{4n+1}{2n-3}\)            (n thuộc Z)

Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)

=> 4n + 1 ⋮ 2n - 3

=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3

=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3

=> 4n + 1 - (4n - 6) chia hết cho 2n - 3

=> 4n + 1 - 4n + 6 chia hết cho 2n - 3

=> 4n - 4n + 1 + 6 chia hết cho 2n - 3

=> 7 chia hết cho 2n - 3

=> 2n - 3 thuộc Ư(7)

Ư(7) = {1; 7; -1; -7}

Lập bảng:

2n - 3 =17-1-7
n =251-2
(loại vì không phải scp) (loại)(loại) 

Vậy n = {2; -2} thì B là số chính phương

b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3  (ta chỉ cần loại những số n trong bảng)

=> n không thuộc {2; 5; 1; -2}

c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0

=> 2n - 3 = 1

=> 2n = 1 + 3

=> 2n = 4

=> n = 4 : 2

=> n = 2

Vậy n = 2 thì B đạt GTLN

b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d

                                                                                                        => 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d

=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)

c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).

Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.

2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm. 

Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất. 

                                                                                                                      => 2n - 3 đặt giá trị dương nhỏ nhất .

                                                                                                        

28 tháng 2 2015

tìm trong toán nâng cao và phát triển tập 2 đúng ko?

 

28 tháng 2 2015

@nguyentoanthang Đúng rồi đấy. Bài 404, 406 và 400 

 

3 tháng 3 2019

mình giải ở trang này nhé         (http://i5.fapality.com/contents/albums/preview/240x999/1000/1934/preview.jpg)