Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(C=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)
\(=7.\frac{13}{28}=\frac{7.13}{28}=\frac{13}{4}\)
b) \(B=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{97.99}\)
\(=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=3.\frac{32}{99}=\frac{3.32}{99}=\frac{32}{33}\)
ax(1+1/3+1/6+1/10+...+1/45)=165/178
ax2x(1/2+1/6+1/12+...+1/90)=165/178
2xax(1/1x2+1/2x3+1/3x4+...+1/9x10)=165/178
2xax(1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10)=165/178
2xax(1-1/10)=165/178
2xax9/10=165/178
2xa=165/178:9/10=275/267
a=275/534
\(a+\frac{a}{3}+\frac{a}{6}+...+\frac{a}{45}=\frac{165}{178}\)
\(\Rightarrow a\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{45}\right)=\frac{165}{178}\)
\(\Rightarrow a.2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)=\frac{165}{178}\)
\(\Rightarrow a\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)=\frac{165}{178}:2\)
\(\Rightarrow a\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)=\frac{165}{356}\)
\(\Rightarrow a\left(1-\frac{1}{10}\right)=\frac{165}{356}\)
\(\Rightarrow a.\frac{9}{10}=\frac{165}{356}\)
\(\Rightarrow a=\frac{165}{356}:\frac{9}{10}=\frac{275}{534}\)
vậy \(a=\frac{275}{534}\)
\(\frac{11}{9}+\frac{35}{18}\)
\(=\frac{19}{6}\)
\(\frac{22}{21}:\frac{1}{2}+\frac{25}{12}:\frac{1}{2}\)
\(\frac{44}{21}+\frac{25}{6}\)
\(\frac{263}{42}\)
\(\left(\frac{5}{3}+\frac{3}{4}\right):\left(\frac{7}{2}-\frac{9}{4}\right)< A< 3\frac{1}{2}-\frac{1}{2}\)
\(3\frac{1}{2}-\frac{1}{2}=3\)
A=2
Do a < b nên \(\frac{3}{a}>\frac{3}{b}\) hay \(\frac{3}{b}< \frac{3}{a}\).
Ta thấy \(\frac{39}{40}=\frac{3}{a}+\frac{3}{b}< \frac{3}{a}+\frac{3}{a}=\frac{6}{a}\) nên suy ra \(\frac{39}{40}< \frac{6}{a}\Rightarrow\frac{78}{80}< \frac{78}{13a}\Rightarrow80>13a\)
Mà \(\frac{3}{a}< \frac{39}{40}\Rightarrow\frac{39}{13a}< \frac{39}{40}\Rightarrow13a>40\)
Nên 80 > 13a > 40. Vậy a = { 4 ; 5 ; 6 }
- Với a = 4 thì \(b=\frac{3}{\frac{39}{40}-\frac{3}{4}}=\frac{3}{\frac{9}{40}}=\frac{120}{9}=\frac{40}{3}\) ( Loại vì không phải số tự nhiên )
- Với a = 5 thì \(b=\frac{3}{\frac{39}{40}-\frac{3}{5}}=\frac{3}{\frac{3}{8}}=\frac{24}{3}=8\) ( Hợp lệ )
- Với a = 6 thì \(b=\frac{3}{\frac{39}{40}-\frac{3}{6}}=\frac{3}{\frac{19}{40}}=\frac{120}{19}\) ( Loại vì không phải số tự nhiên )
Vậy a = 5 ; b = 8
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
a. \(\frac{-3}{2}-2x+\frac{3}{4}=-22\)2
=> \(-2x=-22+\frac{3}{2}-\frac{3}{4}\)
=> \(-2x=\frac{-85}{4}\)
=> \(x=\frac{-85}{4}:\left(-2\right)\)
=> \(x=\frac{85}{8}\)
b. \(\left(\frac{-2}{3}x-\frac{3}{5}\right).\left(\frac{3}{-2}-\frac{10}{3}\right)=\frac{2}{5}\)
=> \(\left(\frac{-2}{3}x-\frac{3}{5}\right).\frac{-29}{6}=\frac{2}{5}\)
=> \(\frac{-2}{3}x-\frac{3}{5}=\frac{2}{5}:\left(\frac{-29}{6}\right)\)
=> \(\frac{-2}{3}x-\frac{3}{5}=\frac{-12}{145}\)
=> \(\frac{-2}{3}x=\frac{-12}{145}+\frac{3}{5}\)
=> \(\frac{-2}{3}x=\frac{15}{29}\)
=> x = \(\frac{15}{29}:\frac{-2}{3}\)
=> x = \(\frac{-45}{58}\)