K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

\(S_{ABCD}=S_{ABED}+S_{BEC}=2S_{ABED}=2.6.9=108cm^2\)

22 tháng 2 2020

A D B E C 45 45

27 tháng 7 2017

khó quá man

27 tháng 7 2017

Qua M kẻ đường thẳng //BC cắt lần lượt AB, CD tại F, G
ta có △MDG=△MAF△MDG=△MAF (g, c, g) (1)
có SABCD=SABCGM+SMDGSABCD=SABCGM+SMDG
=SABCGM+SMAF=SABCGM+SMAF (do (1))
=SBCGF=SBCGF (2)
mà BCGF là hình bình hành nên
SBCGF=BC.MESBCGF=BC.ME (3)
từ (2, 3) =>đpcm

Từ M là trung điểm của AD kẻ ME vuông góc với BC tại E. Chứng minh diện tích hình thang ABCD= ME.BC.png

21 tháng 12 2018

giúp mình với sắp thi rồi

10 tháng 3 2020

Bài 1:

A B C D O M N P Q

a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)

\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)

CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)

\(NP=\frac{1}{2}BC\left(3\right)\)

\(PQ=\frac{1}{2}DC\left(4\right)\)

Mà AB=BC=CD=DA (tc) (5)

Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)

Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb)  (6)

Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)

\(\Rightarrow MQ\perp MN\)

\(\Rightarrow\widehat{QMN}=90^0\)(7) 

Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )

b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)

mà \(AD=16\left(cm\right)\)

\(\Rightarrow MQ=8\left(cm\right)\)

\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)

\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)

Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)

10 tháng 3 2020

A B D C O K H

Kẻ \(BH\perp AD,CK\perp AD\)

\(\Rightarrow BH//CK\)

Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )

Xét tam giác ABD và tam giác ACD có:

2 đường cao BH,CK = nhau , đáy AD chung

\(\Rightarrow S_{ABD}=S_{ACD}\)

\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)

\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)

PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
15 tháng 7 2016

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng g: ?o?n th?ng [B, C] ?o?n th?ng h: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [D, A] ?o?n th?ng j: ?o?n th?ng [Q, P] ?o?n th?ng k: ?o?n th?ng [M, N] ?o?n th?ng l: ?o?n th?ng [N, P] ?o?n th?ng m: ?o?n th?ng [Q, M] ?o?n th?ng n: ?o?n th?ng [B, D] ?o?n th?ng r: ?o?n th?ng [P, F] ?o?n th?ng s: ?o?n th?ng [C, E] A = (-2.9, 1.48) A = (-2.9, 1.48) A = (-2.9, 1.48) B = (2.68, 1.4) B = (2.68, 1.4) B = (2.68, 1.4) D = (-4.16, 5.6) D = (-4.16, 5.6) D = (-4.16, 5.6) C = (3.5, 7.6) C = (3.5, 7.6) C = (3.5, 7.6) ?i?m M: Trung ?i?m c?a f ?i?m M: Trung ?i?m c?a f ?i?m M: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a g ?i?m P: Trung ?i?m c?a h ?i?m P: Trung ?i?m c?a h ?i?m P: Trung ?i?m c?a h ?i?m Q: Trung ?i?m c?a i ?i?m Q: Trung ?i?m c?a i ?i?m Q: Trung ?i?m c?a i ?i?m E: Giao ?i?m c?a p, n ?i?m E: Giao ?i?m c?a p, n ?i?m E: Giao ?i?m c?a p, n ?i?m F: Giao ?i?m c?a q, n ?i?m F: Giao ?i?m c?a q, n ?i?m F: Giao ?i?m c?a q, n ?i?m G: Giao ?i?m c?a j, n ?i?m G: Giao ?i?m c?a j, n ?i?m G: Giao ?i?m c?a j, n ?i?m H: Giao ?i?m c?a k, n ?i?m H: Giao ?i?m c?a k, n ?i?m H: Giao ?i?m c?a k, n

Cô hướng dẫn nhé.

a.MN, PQ cùng song song và bằng một nửa AC, vậy MNPQ là hình bình hành.

b. Em nhìn đc nhé.

c. Cho các điểm như hình vẽ. Kẻ CE, PF vuông góc BD. Khi đó ta có CE = 2DF.

Ta có: \(\frac{S_{PNHG}}{S_{DCB}}=\frac{GH.PF}{\frac{1}{2}AC.CE}=\frac{GH.PF}{PN.CE}=\frac{PF}{CE}=\frac{1}{2}\)

Tương tự \(\frac{S_{MQGH}}{S_{ABD}}=\frac{1}{2}\Rightarrow\frac{S_{MNPQ}}{S_{ABCD}}=\frac{1}{2}\)

Từ đó ta tìm đc \(S_{ABCD}=32\)