K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

23 tháng 5 2021

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta có AB/BC = DB/CD = AB/BD

hay AD/BC = AB/BD ⇔ 3,5/BC = 2,5/5

➩ BC= 3,5 . 5/2,5 = 7 (cm)

ta lại có: DB/CD = AB/BD ⇔ 5/CD = 2,5/5

==> CD = 5.5/2,5 =10 (cm)

c) Từ (1) ta được:

AD/BC = DB/CD = AB/BD

hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng dạng với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)2 = 1/4

24 tháng 5 2021
Gửi bạn nhé.Chữ xấu ráng chịu

Bài tập Tất cả

a: Xét ΔABD và ΔBDC có 

\(\widehat{ABD}=\widehat{BDC}\)

\(\widehat{A}=\widehat{DBC}\)

Do đó: ΔABD\(\sim\)ΔBDC

b: Ta có: ΔABD\(\sim\)ΔBDC

nên \(\dfrac{AB}{BD}=\dfrac{BD}{DC}=\dfrac{AD}{BC}\)

\(\Leftrightarrow\dfrac{5}{DC}=\dfrac{1}{2}=\dfrac{3.5}{BC}\)

=>DC=10; BC=7

c: Ta có: ΔABD\(\sim\)ΔBDC

nên \(\dfrac{S_{ABD}}{S_{BDC}}=\left(\dfrac{AB}{BD}\right)^2=\dfrac{1}{4}\)

27 tháng 4 2018

a, Xét tam giác BDC và tam giác HBC có:

            góc DBC= góc BHC(=90độ)

           Góc C chung(gt)

=> Tsm giác BDC đồng dạng với tam giác HBC

b, Theo hệ thức trong tam giác vuông BDC ta có:

\(BC^2=DC.HC\)  => \(HC=\frac{BC^2}{DC}=\frac{15^2}{25}=9\)          

Áp dụng định lí Pytago ta có:

HC= \(\sqrt{BC^2-HC^2=\sqrt{15^2-9^2}=12}\) 

=> DC=25-12=13

c, Xét tam giác ADK và tam giác BCH có:

          góc K = góc H(=90độ)

           AD=BC

         góc D=góc C

=> Tam giác ADK=Tam giác BCD

=> DK=HC

=>AB= KH=DC-2HC=25-9.2=7

=> Diện tích hình thang ABCD =\(\frac{AB+DC}{2}.BH=\frac{7+25}{2}.BH\)

Bạn tính nốt nha

27 tháng 4 2018

A B C D H

Xét tam giác vuông BDC và tam giác vuông HBC có:

\(\widehat{C}\) là góc chung

Do đó : \(\Delta BDC~\Delta HBC\)( g-g )

b) 

Xét tam giác vuông BDC có:

\(BD^2=DC^2-BC^2\)( ĐLPTG )

\(\Rightarrow BD=\sqrt{DC^2-BC^2}\)

\(\Rightarrow BD=\sqrt{400}=20\)

Có \(\Delta BDC~\Delta HBC\) ( cmt)

\(\Rightarrow\frac{BD}{BH}=\frac{DC}{BC}\)

\(\Leftrightarrow\frac{20}{BH}=\frac{25}{15}\)

\(\Leftrightarrow BH=\frac{20.15}{25}=12\) ( cm )

Câu c bạn tự làm nhé