Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I K G x x x x E D
P/s : Hình vẽ k đc chính xác ! Thông cảm ạ !
a) Ta có : AE = EB
AD = DC
\(\Rightarrow\)ED là đường trung bình của △ABC
\(\Rightarrow\)ED song song và bằng \(\frac{1}{2}\)BC (1)
Lại có : IG = IB
KG = KC
\(\Rightarrow\)IK là đường trung bình của △GBC
\(\Rightarrow\)IK song song và bằng \(\frac{1}{2}\)BC (2)
Từ (1) và (2) suy ra : ED song song và bằng IK
\(\Rightarrow\)Tứ giác DEIK là hình bình hành
Mà EK ⊥ DI
\(\Rightarrow\) Tứ giác DEIK là hình thoi
Có : G là trọng tâm của △ABC
\(\Rightarrow\)GD = \(\frac{1}{3}\)BD
GE = \(\frac{1}{3}\)EC
Vì △ABC cân nên BD = EC
\(\Rightarrow\)\(\frac{1}{3}\)BD = \(\frac{1}{3}\)EC
\(\Rightarrow\)GD = GE
\(\Rightarrow\)2GD = 2GE
\(\Rightarrow\)DI = EK
\(\Rightarrow\)Tứ giác DEIK là hình vuông
b) Ta có :
GE = \(\frac{1}{3}\)CE (Vì G là trọng tâm của △ABC)
\(\Rightarrow\)GE = 4 cm
Vì DEIK là hình vuông
\(\Rightarrow\)△GED vuông cân tại G
Áp dụng định lí Pythagoras vào △GED vuông cân tại G, ta có :
ED2 = GE2 + GD2
\(\Rightarrow\)ED2 = 2GE2
\(\Rightarrow\)ED2 = 2.42
\(\Rightarrow\) ED2 = 32
\(\Rightarrow\)ED = \(\sqrt{32}\)cm
Vậy \(S_{DEIK}=\left(\sqrt{32}\right)^2=32\left(cm^2\right)\)
a)
BD là đường trung tuyến của Δ ABC nên D là trung điểm của AC (1)
CE là đường trung tuyến của Δ ABC nên E là trung điểm của AB (2)
Từ (1) và (2) suy ra :
DE là đường trung bình của Δ ABC
=> DE // BC và DE = 1/2 BC
Δ BGC có H là trung điểm của GB và K là trung điểm của GC
suy ra HK là đường trung bình của Δ BGC
=> HK // BC và HK = 1/2 BC
Tứ giác DEHK có DE//BC, HK // BC và DE = HK = 1/2 BC
nên tứ giác
b) DEHK là hình bình hành nên
HG = GD = 1/2 HD và GE = GK = 1/2 EK
Để tứ giác DEHK là hình chữ nhật thì
HD = EK => 1/2 HD = 1/2 EK => GE = GD và GH = GK
GH = GK => 2GH = 2GK => GB = GC
Xét Δ GEB và Δ GDC có
GE = GD Góc EGB = góc DGC GB = GC => ΔGEB = ΔGDC (c.g.c) => BE = CD => 2BE = 2CD => AB = AC => ΔABC cân tại A Vậy đểtứ giác DEHK là hình chữ nhật thì
ΔABC cân tại Ac) BD ⊥ CE => HD ⊥ EK Hình bình hành DEHK có HD ⊥ EK nên DEHK là hình thoi Vậy
nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình thoi
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
a) \(\Delta ABC\)có EA = EB; DA = DC
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = \(\frac{BC}{2}\) (2)
\(\Delta GBC\)có HG = HB; KG = KC
\(\Rightarrow\)HG là đường trung bình của \(\Delta GBK\)
\(\Rightarrow\)HG // BC; HG = \(\frac{BC}{2}\) (1)
Từ (1); (2) suy ra: ED = HK; ED // HK
\(\Rightarrow\)Tứ giác DEHK là hình bình hành
tam giác ACD có AO=OD(O là giao điểm hai đường chéo)
AM=MD(M là trung điểm AD) suy ra MO là đường trung bình tam giác ACD
=> MO=\(\dfrac{DC}{2}\)=\(\dfrac{16}{2}\)=8 cm
tam giác ACD vuông tại D suy ra AC2= AD2+DC2
AC2= 122+162= 144+256=400
=> AC=\(\sqrt{400}\)=20 cm
tam giác ACD vuông tại D có DO là đường trung tuyến(OB=OD)
suy ra DO= \(\dfrac{AC}{2}\)=\(\dfrac{20}{2}\)=10 cm
tui làm bài 1 thui còn bài còn lại làm biếng