Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Hình chiếu của S xuống đáy ABC là tâm của đáy tức là M với M là trung điểm của BC.
Ta có
Vì ABC là tam giác vuông cân nên H cũng là trung điểm của vì thế
Ta có: = a 2 2
Đáp án B
Gọi I là hình chiếu của điểm S trên mặt phẳng (ABC). Do SA = SB = SC nên IA = IB = IC => I là tâm đường tròn ngoại tiếp ∆ ABC . Mà ∆ ABC vuông cân tại A nên I là trung điểm của BC và IA = IB = IC = BC/2 = a 2 2
Ta có IA là hình chiếu của SA trên mặt phẳng (ABC) nên
Do ∆ SIA vuông tại I nên vuông cân tại I, khi đó :
Gọi M là trung điểm AB là N là trung điểm BM
\(\Rightarrow CM\perp AB\) (trung tuyến đồng thời là đường cao trong tam giác đều)
NH là đường trung bình tam giác BCM \(\Rightarrow NH||CM\Rightarrow NH\perp AB\)
\(\Rightarrow AB\perp\left(SNH\right)\) \(\Rightarrow\left(SAB\right)\perp\left(SNH\right)\) với SN là giao tuyến
Trong mp (SNH), từ H kẻ \(HK\perp SN\Rightarrow HK\perp\left(SAB\right)\Rightarrow HK=d\left(H;\left(SAB\right)\right)\)
\(CM=\dfrac{AC\sqrt{3}}{2}=6a\) ; \(NH=\dfrac{1}{2}CM=3a\)
\(\widehat{SNH}=60^0\Rightarrow HK=NH.sin60^0=\dfrac{3a\sqrt{3}}{2}\)
Gọi D là trung điểm AB \(\Rightarrow HD\) là đường trung bình tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}HD||AC\Rightarrow HD\perp AB\\HD=\dfrac{1}{2}AC=\dfrac{a}{2}\end{matrix}\right.\)
\(\Rightarrow AB\perp\left(SHD\right)\)
\(\Rightarrow\widehat{SDH}\) là góc giữa (SAB) và đáy
\(\Rightarrow\widehat{SDH}=60^0\)
\(\Rightarrow SH=DH.tan60^0=\dfrac{a\sqrt{3}}{2}\)
Từ H kẻ \(HK\perp SD\) (K thuộc SD)
\(\Rightarrow HK\perp\left(SAB\right)\Rightarrow HK=d\left(H;\left(SAB\right)\right)\)
\(HK=\dfrac{SH.DH}{\sqrt{SH^2+DH^2}}=\dfrac{a\sqrt{3}}{4}\)
1.
Gọi O là giao điểm AC và BD, Q là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\\OQ\perp AB\end{matrix}\right.\)
\(\Rightarrow AB\perp\left(SOQ\right)\)
Từ O kẻ \(OH\perp SQ\Rightarrow OH\perp\left(SAB\right)\Rightarrow OH=d\left(O;\left(SAB\right)\right)\)
\(OQ=\dfrac{BC}{2}=\dfrac{AB}{2}=\dfrac{a}{2}\) ; \(SO=\sqrt{SA^2-\left(\dfrac{BD}{2}\right)^2}=\dfrac{a\sqrt{6}}{2}\)
\(\dfrac{1}{OH^2}=\dfrac{1}{OQ^2}+\dfrac{1}{SO^2}=\dfrac{14}{3a^2}\Rightarrow OH=a\sqrt{\dfrac{14}{3}}\)
\(d\left(P;\left(SAB\right)\right)=2d\left(O;\left(SAB\right)\right)=2OH=2a\sqrt{\dfrac{14}{3}}\)
2.
Câu này đề đúng ko nhỉ? Vì thấy quá nhiều dữ kiện thừa thãi.
Từ \(\overrightarrow{IA}=-2\overrightarrow{IH}\Rightarrow I;A;H\) thẳng hàng
Mà ABC vuông cân tại A \(\Rightarrow AI\perp BC\Rightarrow AH\perp BC\)
Từ K kẻ \(KP||BC\) (P thuộc AH) \(\Rightarrow KP\perp AH\)
\(\left\{{}\begin{matrix}KP\in\left(SAB\right)\Rightarrow SH\perp KP\\KP\perp AH\end{matrix}\right.\) \(\Rightarrow KP\perp\left(SAH\right)\)
\(\Rightarrow KP=d\left(K;\left(SAH\right)\right)\)
\(KP=\dfrac{1}{2}IB\) (đường trung bình); \(IB=\dfrac{1}{2}BC=\dfrac{1}{2}AB\sqrt{2}=a\Rightarrow KP=\dfrac{a}{2}\)