K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

Bảng biến thiên:

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị ( hình thang trên ).

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

* Khảo sát hàm số Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

+ Tập xác định: D = R\{0}.

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Đường thẳng a = 0 là tiệm cận đứng của đồ thị hàm số.

+ Lại có: Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Do đó, đường thẳng P(a) =1 là tiệm cận ngang của đồ thị hàm số.

+ Đạo hàm: Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Do đó hàm số này nghịch biến trên tập xác định.

Bảng biến thiên

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị hàm số

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

1 tháng 4 2017

a) Khi a = 0 ta có hàm số: y=−13x3−x2+3x−4y=−13x3−x2+3x−4

- Tập xác định : (-∞, +∞)

- Sự biến thiên: y’= -x2 – 2x + 3

y’=0 ⇔ x = 1, x = -3

Trên các khoảng (-∞, -3) và (1, +∞), y’ < 0 nên hàm số nghịch biến.

Trên khoảng (-3, 1), y’ > 0

_ Cực trị:

Hàm số đạt cực đại tại x = 1, yCD=−73yCD=−73

Hàm số đạt cực tiểu tại x = -3, yCT=−13yCT=−13

_ giới hạn vô cực : limx→+∞=−∞,limx→−∞=+∞limx→+∞=−∞,limx→−∞=+∞

Bảng biến thiên:

Đồ thị hàm số:

Đồ thị cắt trục tung tại y = -4

Đồ thị cắt trục hoành tại x ≈ 5, 18

b) Hàm số y=−13x3−x2+3x−4y=−13x3−x2+3x−4 đồng biến trên khoảng (-3, 1) nên:

y < y(1) = −73−73 < 0, ∀x ∈ (-1, 1)

Do đó , diện tích cần tính là:

∫1−1(−13x3−x2+3x−4)dx=263



Xem thêm tại: http://loigiaihay.com/cau-2-trang-145-sgk-giai-tich-12-c47a26419.html#ixzz4czxQ4IGx

14 tháng 7 2019

Với a = 1; b = -1, hàm số trở thành: y = x 3 + x 2  – x + 1.

- Tập xác định : D = R.

- Sự biến thiên :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận :

Hàm số đồng biến trên (-∞ ; -1) và Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số nghịch biến trên Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực đại tại x = -1 ; y = 2.

Hàm số đạt cực tiểu tại Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

21 tháng 12 2017

Thể tích vật cần tính là :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tham khảo:

undefined

undefined

undefined

19 tháng 1 2018

Đáp án D.

29 tháng 7 2018

Đáp án C