\(f\left(x\right)=5x-7;g\left(x\right)=3x+1\)
1. Tìm nghiệm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

9 tháng 11 2016

a, \(x-2x^2+2x^2-x+4=4\)

b,\(x^2-5x-x^2-2x+7x=0\)

c,\(x^2-x+1\)

\(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

19 tháng 4 2018

a) b)c)PT vô nghiệm

31 tháng 3 2020

Bài 1:

1. Thay x=-5;y=3 vào P ta được:

P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40

2. P=2x(x+y-1)+y2+1

\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

31 tháng 3 2020

Bài 2:

1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)

\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0

Vậy x=-4 là nghiệm của f(x)

3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)

\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)

Bạn tham khảo nha, không hiểu cứ hỏi mình ha

18 tháng 7 2015

a) Ta có: h(x) = 5x-7-(3x+1) = (5x-3x)-(7+1) = 2x-8

Vì 2x-8 = 0 nên x=4

Vậy nghiệm của đa thức h(x) là 4

b) Vì 2x-8 = 0 tại x = 4 nên 5x-7 = 3x+1 tại x = 4

 Vậy f(x)=g(x) tại x =4

7 tháng 4 2019

\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)

                     \(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)

                       \(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)

                       \(=2x^2+x\)

+, Đặt \(2x^2+x=0\)

     \(\Leftrightarrow x.2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)

                        

7 tháng 4 2019

ak bạn thêm kết kuận nha!

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha