Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(ĐPCM:\hept{\begin{cases}\sqrt{x}-2\ne0\\3-\sqrt{x}\ne0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne4\\x\ne9\\x\ge0\end{cases}}\)
\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
1. a) Để hàm số đồng biến thì m-1>0\(\Rightarrow\)m>1 b) Để hàm số nghịch biến m-1<0\(\Rightarrow\)m<1 2. a) Tự làm b) Xét phương trình hoành độ -2x+1=2x\(\Rightarrow\)x=1/4\(\Rightarrow\) y=1/2. Vậy giao điểm của d và d' có tọa độ (1/4; 1/2)
3 a)ĐKXĐ \(x\ge0\)\(x\ne1\)A=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{-2}{\sqrt{x}+1}\) b)Khi x= \(6-2\sqrt{5}\)thì A=\(\frac{-2}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\)=\(\frac{2}{\sqrt{5}}\)
Mk làm cho bài bđt nha
Bài 2 :
Có : (x-y)^2 >= 0
<=> x^2-2xy+y^2 >= 0
<=> x^2+y^2 >= 2xy
Tương tự : y^2+z^2 >= 2yz ; z^2+x^2 >= 2zx
=> 2.(x^2+y^2+z^2) >= 2xy+2yz+2zx
<=> x^2+y^2+z^2 >= xy+yz+zx
<=> x^2+y^2+z^2+2xy+2yz+2zx >= 3.(xy+yz+zx)
<=> (x+y+z)^2 >= 3.(xy+yz+zx)
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z
Tk mk nha