K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Câu 2

Kẻ D doi xung voi A qua Ox

     E doi xung voi A qua Oy

Goi B' la 1 diem bat ki tren Ox,C' la 1 diem bat ki tren Oy 

Do Ox la duong trung truc cua AD

=> BA=BD,B'A=B'A

Tuong tu=> C'A=C'E,CA=CE

Ta co 

PABC=AB+BC+AC

          Ma AB=BD.AC=CE

=>PABC=BC+BD+CE=ED

lai co B'D+B'E\(\ge ED\)

          B'C'\(\ge B'E\)

=> B'D+B'C'+C'E\(\ge ED\)

=>PAB'C'\(\ge P_{ABC}\)

Dau ''='' xay ra khi B'\(\equiv B,C'\equiv C\)

a: Ta có: AE+EB=AB

AF+FC=AC

mà AB=AC
và EB=FC

nên AE=AF

hay A nằm trên đường trung trực của FE(1)

Xét ΔEBH và ΔFCH có 

EB=FC
\(\widehat{B}=\widehat{C}\)

BH=CH

Do đó: ΔEBH=ΔFCH

Suy ra: HE=HF

hay H nằm trên đường trung trực của FE(2)

Từ (1) và (2) suy ra E và F đối xứng nhau qua AH

5 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét  ∆ OAD và ∆ BAC, ta có:

OA = AB (tính chất đối xứng tâm)

∠ A 1 =  ∠ A 2 (đối đỉnh)

∠ O 1 =  ∠ B 1 (so le trong)

Do đó:  ∆ OAD =  ∆ BAC (g.c.g)

⇒ AD = AC

Suy ra: C đối xứng với D qua A.

11 tháng 5 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì B đối xứng với A qua trục Ox nên Ox là đường trung trực của đoạn AB.

⇒ OA = OB (tính chất đường trung trực) (1)

Vì C đối xứng với A qua trục Oy nên Oy là đường trung trực của đoạn AC.

⇒ OA = OC (tính chất đường trung trực) (2)

Từ (l) và (2) suy ra: OB = OC.

3 tháng 12 2021

Gọi giao điểm của MN và Ox là điểm A; giao điểm của MN và Oy là điểm B.

Ta có: N là điểm đối xứng với M qua Ox (gt).

           O \(\in\) Ox.

=> \(\left\{{}\begin{matrix}OA\perp MN.\\\text{ON = OM.(1)}\end{matrix}\right.\) 

Ta có: P là điểm đối xứng với M qua Oy (gt).

           O \(\in\) Oy.

=> \(\left\{{}\begin{matrix}OB\perp MP.\\\text{OM = OP.(2)}\end{matrix}\right.\)

Từ (1) và (2) => OP = ON = OM.

Xét tam giác NOM có: ON = OM (cmt).

=> Tam giác NOM cân tại O.

Mà OA là đường cao (do OA vuông góc MN).

=> OA là phân giác của ^NOM (Tính chất các đường trong tam giác cân).

=> ^NOA = ^AOM.

Xét tam giác MOP có: OP = OM (cmt).

=> Tam giác MOM cân tại O.

Mà OB là đường cao (do OB vuông góc MP).

=> OB là phân giác của ^MOP (Tính chất các đường trong tam giác cân).

=> ^MOB = ^BOP.

Ta có: ^NOA + ^AOM + ^MOB + ^BOP.

=  2. ^AOM + 2. ^MOB.

= 2. (^AOM + ^MOB).

= 2. ^AOB.

= 2. 90o = 180o.

=> 3 điểm N; O; P thẳng hàng.

Mà OP = ON (cmt).

=> O là trung điểm của NP.

=> P và N đối xứng nhau qua O (đpcm).

 

 

15 tháng 8 2021

giải giùm mình vì đang cần lắm!!!!

 

31 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cách dựng:

- Dựng điểm D đối xứng với A qua Ox

- Dựng điểm E đối xứng với A qua Oy

Nối DE cắt Ox tại B, Oy tại C

Tam giác ABC là tam giác có chu vi nhỏ nhất

Vì ∠ (xOy) < 90 0  nên DE luôn cắt Ox và Oy do đó  ∆ ABC luôn dựng được.

Chứng minh:

Chu vi  ∆ ABC bằng AB + BC + AC

Vì D đối xứng với A qua Ox nên Ox là trung trực của AD

⇒ AB = BD (tính chất đường trung trực)

E đối xứng với A qua Oy nên Oy là trung trực của AE

⇒ AC = CE (tính chất đường trung trực)

Suy ra: AB + BC + AC = BD + BC + BE = DE (1)

Lấy B' bất kì trên Ox, C' bất kì trên tia Oy. Nối C'E, C'A, B'A, B'D.

Ta có: B'A = B'D và C'A = C'E (tính chất đường trung trực)

Chu vi  ∆ AB'C' bằng AB'+ AC’ + B'C'= B'D+C’E+ B'C' (2)

Vì DE ≤ B'D + C’E+ B'C' (dấu bằng xảy ra khi B' trùng B, C' trùng C) nên chu vi của  ∆ ABC ≤ chu vi của ∆ A'B'C'

Vậy  ∆ ABC có chu vi bé nhất.