Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(0)=a.0
2
+b.0+c=c=>c là số nguyên
f(1)=a.1
2
+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2
2
+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
Ta có
\(f\left(x\right)=\frac{1}{6}x^3-\frac{1}{6}x\)
\(f\left(x\right)=\frac{1}{6}x\left(x^2-1\right)\)
Ta sẽ chứng minh x(x2-1) luôn chia hết cho 6
Thật vậy, ta có x(x2-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k => Tích chia hết cho 3
Với x=3k+1 =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3 => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên
Ta có
ƒ x =
6
1 x
3 −
6
1 x
ƒ x =
6
1 x x
2 − 1
Ta sẽ chứng minh x(x2
-1) luôn chia hết cho 6
Thật vậy, ta có x(x2
-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k => Tích chia hết cho 3
Với x=3k+1 =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3 => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2
-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên
Ta có f(0)=a.02+b.0+c=c
=> c là số nguyên
f(1)=a.12+b.1+c=a+b+c=(a+b)+c
Vì c là số nguyên nên a+b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+c
=>2.(2a+b) là số nguyên
=> 2a+b là số nguyên (2)
Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên =>a là số nguyên => b cũng là số nguyên
Vậy f(x) luôn nhân giá trị nguyên với mọi x
Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên
f(1)=a.1\(^{^2}\)+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x