\(\Delta\)ABC cân tại A , trên cạch AB và AC lấy các điểm M và N sao cho BM =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Bài 1) Ta có hình sau:

A B C M N 40 o

1) Tứ giác BNMC là hình tam giác vì điểm N không thể ngăn cách đoạn thẳng CB thằng 2 điểm đối nhau, song song

Hơn nữa vì hình BNMC chỉ có 3 đoạn thẳng nên đó là tam giác. Nhìn vào hình vẽ ta cũng thấy được rằng đó làm tam giác nhọn

2)Chịu! Anh này mới lớp 6 thôi

Bài 2) Ta có hình vẽ:

O A B C D

Nếu OA = OB thì ABCD sẽ là hình thang cân vì nếu OB = OA thì các cạnh: AD = BC

Và AB < CD

=> ABCD là hình thang cân nếu OA = OB

22 tháng 9 2017

tk cko mk roy  mk tl cko

10 tháng 3 2020

Bài 1:

A B C D O M N P Q

a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)

\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)

CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)

\(NP=\frac{1}{2}BC\left(3\right)\)

\(PQ=\frac{1}{2}DC\left(4\right)\)

Mà AB=BC=CD=DA (tc) (5)

Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)

Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb)  (6)

Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)

\(\Rightarrow MQ\perp MN\)

\(\Rightarrow\widehat{QMN}=90^0\)(7) 

Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )

b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)

mà \(AD=16\left(cm\right)\)

\(\Rightarrow MQ=8\left(cm\right)\)

\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)

\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)

Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)

10 tháng 3 2020

A B D C O K H

Kẻ \(BH\perp AD,CK\perp AD\)

\(\Rightarrow BH//CK\)

Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )

Xét tam giác ABD và tam giác ACD có:

2 đường cao BH,CK = nhau , đáy AD chung

\(\Rightarrow S_{ABD}=S_{ACD}\)

\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)

\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)

PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn

Bài 5: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

1) Vì AH\(\perp\)DC 

BK\(\perp\)DC 

=> AH//BK 

Mà BAH + AHK = 180° ( trong cùng phía) 

=> BAH = 90° 

Mà ABK + BKH = 180° ( trong cùng phía) 

=> ABK = 90° 

Mà BAH = AHK = 90° 

Mà 2 góc này ở vị trí trong cùng phía 

=> AB//HK 

=> ABKH là hình thang cân 

=> ABKH là hình thang cân 

=> AB = HK , AH = BK

b) Vì ABCD là hình thang cân 

=> AD = BC 

=> ADC = BCD 

Xét ∆ vuông AHD và ∆ vuông BKC ta có : 

AD = BC 

ADC = BCD 

=> ∆AHD = ∆BKC (ch-gn)

Mà DH = KC ( tương ứng) 

c) Ta có : 

DH + HK + KC = DC

Mà HK = AB 

=> DH + AB + KC = DC

DH + KC = DC - AB 

Mà DH = KC 

=> DH = \(\frac{1}{2}\)( CD - AB )

thêm hình cho bài nó hoàn chỉnh :))

A B D C H K

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

10 tháng 11 2018

giải đi người ta t.i.c.k cho

19 tháng 5 2019

Xét tam giác ABD và tam giác BDC

có \(\widehat{DAB}=\widehat{CBD}\)

\(\widehat{ABD}=\widehat{BDC}\)(so le trong, AB // CD)

nên tam giác ABD đồng dạng với tam giác DBC

2

Xét tam giác ADC có

M là trung điểm của AD

N là trung điểm của AC

suy ra MN là đường trung bình của tam giác ADC

nên MN // DC (1)

Xét tam giác ABC có

K là trung điểm của BC

N là trung điểm của AC

suy ra NK là đường trung bình của tam giác ABC

nên NK //AB 

mà AB // CD 

do đó NK // CD (2)

Từ (1), (2) và theo tiên đề ơ-clít ta có

NK trùng với MN

do đó M,N,K thẳng hàng

19 tháng 5 2019

Hình bạn tự vẽ nhé ! 

Câu 1: 

Xét tam giác ABD và tam giác DBC có

Góc DAB = góc CBD 

Góc ABD = góc BDC ( so le trong AB // CD )

nên tam giác ABD đồng dạng tam giác DBC

Câu 2:

Xét tam giác ADC có: 

M là trung điểm của AD

N là trung điểm của AC

=> MN là đường trung bình của tam giác ADC => MN // DC (1)

Xét tam giác ABC có: 

K là trung điểm của BC

N là trung điểm của AC

=> NK là đường trung bình của tam giác ABC => NK // AB 

mà AB / CD => NK // CD (2)

Từ (1) và (2) theo tiên đề Ơ - clit ta có: 

NK trùng với MN => M, N, K thẳng hàng ( đpcm )