Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tan giác ABH và ACH
AB=AC (gt)
BH=BC (gt)
AH là cạnh chung
vây tam giác ABH=ACH (c.c.c)
vậy goc AHB=AHC (2 góc tương ứng)
vì AHB+AHC=180 (kề bù)
Mà AHB=AHC
vậy AHB=AHC=180:2=90
vậy AH vuông góc với BC
vi CB vuông góc Cx (gt)
AH vuông góc BC (cmt)
vậy Cx//AH
tam giác vuông EBC có E+B=90
tam giác vuông AHB có BAH+ B=90
Vậy BAH=BEC hay BAH=AEC
d) Gọi M là giao điểm của HA và KI
\(\Delta\)HKB = \(\Delta\)HIC ( theo c)
=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )
=> ^BHA - ^BHK = ^CHA - ^CHI
=> KHA = ^IHA hay ^KHM = ^IHM (1)
Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung
=> \(\Delta\)IHM = \(\Delta\)KHM
=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ
=> ^HMK = ^HMI = 90 độ
hay HA vuông KI
mà HA vuông BC
=> KI // BC
A B C H
a) Xét tam giác AHB và tam giác AHC có:
AH chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)
AB=AC (tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC (đpcm)
b) Xét tam giác ABC cân tại A có AH là đường cao
=> AH trùng với đường trung tuyến
=> H là trung điểm BC => HB=HC (đpcm)
a.Xét tam giác AMH và tam giác NMB có
MA = MN [ gt ]
góc AMH = góc NMB [ đối đỉnh ]
HM = BM [ gt ]
Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]
\(\Rightarrow\)góc AHM = góc NBM
mà bài cho góc AHM = 90độ
\(\Rightarrow\)góc NBM = 90độ
Vậy NB vuông góc với BC
b.Theo câu a ; tam giác AMH = tam giác NMB
\(\Rightarrow\)AH = NB [ cạnh tương ứng ]
Mặt khác ; Xét tam giác AHB vuông tại H có
AB lớn hơn AH
\(\Rightarrow\)AB lớn hơn NB
giúp tui với cảm ơn các bạn nhé!