\(\Delta\) ABC cân tại A có góc A= 40 độ. Vẽ BM\(\perp\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{ABM}+\widehat{A}=90^0\)

\(\widehat{ACN}+\widehat{A}=90^0\)

Do đó \(\widehat{ABM}=\widehat{ACN}\)

b: Xét ΔAND vuông tại N và ΔAMD vuông tại M có

AD chung

AN=AM

Do đo: ΔAND=ΔAMD

Suy ra: \(\widehat{NAD}=\widehat{MAD}\)

hay AD là phân giác của góc BAC

c: Xét ΔABI vuông tại B và ΔACI vuông tại C có

AI chung

AB=AC

Do đó: ΔABI=ΔACI

Suy ra: IB=IC

hay ΔIBC cân tại I

24 tháng 1 2018

Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

15 tháng 2 2019

a, xét tam giác AHB và tam giác DBH có : HB chung

góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)

AH = BD (gt)

=> tam giác AHB = tam giác DBH (2cgv)

b, tam giác AHB = tam giác DBH (câu a)

=>  góc DHB = góc HBA (đn) mà 2 góc này so le trong

=> HD // AB (đl_

c, câu này dễ tự tính được

2 tháng 2 2019

-tự vẽ hình

a) xét tam giác ADB và tam giác AEC, ta có:

AD=AE(gt)

Góc ADB=Góc AEC(gt)

DB=CE(gt)

Vậy tam giác ADB = tam giác AEC (c-g-c)

=> AB=AC(cặp cạnh t/ứng) 

=> ABC là tam giác cân tại A

b) Xét tam giác DMB và tam giác ENC, ta có:

DB=CE(gt)

Góc MDB=Góc NEC(gt)

Vậy tam giác DMB = tam giác ENC

=> BM=CN(cặp cạnh t/ứng)

=>góc MBD=góc NCE(cặp góc t/ứng)

c) ta thấy: góc MBD=góc CBI(đối đỉnh)

góc NCE=góc BCI(đối đỉnh)

=> góc CBI=góc BCI => tam giác IBC là tâm giác cân tại I

d) Xét tam giác BAI và tam giác CAI, ta có:

AB=AC(cmt)

BI=IC(tam giác IBC cân tại I)

AI là cạnh chung

Vậy tam giác BAI = tam giác CAI

=> góc BAI=IAC(cặp góc t/ứng)

=> AI là tia phân giác của BAC(đpcm)

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

17 tháng 3 2021

à há lllllllo bạn

17 tháng 3 2021

a) Xét tg ABH và ACK có :

AB=AC(tg ABC cân tại A)

\(\widehat{A}-chung\)

\(\widehat{AHB}=\widehat{AKC}=90^o\)

=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)

b) Do tg ABH=ACK (cmt)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tg OBC cân tại O

=> OB=OC (đccm)

c) Do : AB=AC (tg ABC cân tại A)

MB=NC(gt)

=> AB+BM=AC+CN

=> AM=AN

=> Tg AMN cân tại A

\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

- Do tg ABH=ACK (cmt)

=> AK=AH

=> Tg AKH cân tại A

\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)

Mà chúng là 2 góc đồng vị

=> KH//MN (đccm)

#H

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0