Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(t=\sqrt{2x^2-3x+5}\ge0\) thì
\(2t=t^2-11\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1+2\sqrt{3}\\t=1-2\sqrt{3}\end{matrix}\right.\)
Vì \(t\ge0\) nên \(t=1+2\sqrt{3}\)
\(\Rightarrow\sqrt{2x^2-3x+5}=1+2\sqrt{3}\)
\(\Leftrightarrow2x^2-3x+5=13-4\sqrt{3}\)
\(\Leftrightarrow2x^2-3x-8+4\sqrt{3}=0\)
Giải pt trên tìm được x
c) ĐK: \(x\ge0\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(2b^2+2ab=4\left(a+b\right)\)
\(\Leftrightarrow\left(b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=-\sqrt{x+3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=x+3\end{matrix}\right.\)
Vậy pt có 1 nghiệm duy nhất x = 1.
b) ĐK: tự làm
Ta có \(\left(x+5\right)\left(2-x\right)=-x\left(x+3\right)+10\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(-a^2b^2+10=3ab\)
\(\Leftrightarrow-a^2b^2-3ab+10=0\) (*)
Đặt \(t=ab\ge0\) thì (*) \(\Rightarrow-t^2-3t+10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ab=t=2\\ab=t=-5\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x\left(x+3\right)}=2\)
Bạn tự làm tiếp nhé
Bài 1 :
\(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)
\(=\left(150\sqrt{2}-45\sqrt{2}+10\sqrt{2}\right):\sqrt{10}\)
\(=115\sqrt{2}:\sqrt{10}\)
\(=23\sqrt{5}\)
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
Bài 5:Dự đoán dấu = xảy ra khi a = 2; b=3;c=4. Ta có hướng giải như sau:
\(A=\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)+\frac{a}{4}+\frac{b}{2}+\frac{3}{4}c\)
Áp dụng BĐT AM-GM,ta được:
\(A\ge2\sqrt{\frac{3}{4}a.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{1}{4}c.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{1}{4}.20=13\)
Dấu "=" xảy ra khi a = 2; b=3;c=4
VẬy A min = 13 khi a = 2; b=3;c=4
Bài 1: Bạn xem lại đề, với điều kiện như đã cho thì A có max chứ không có min
Bài 2:
\(A=(a+1)^2+\left(\frac{a^2}{a+1}+2\right)^2=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2\)
\(=(a+1)^2+\left(\frac{(a+1)^2+1}{a+1}\right)^2=(a+1)^2+\left(a+1+\frac{1}{a+1}\right)^2\)
\(=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\) (đặt \(t=a+1)\)
Áp dụng BĐT AM-GM:
\(2t^2+\frac{1}{t^2}\geq 2\sqrt{2}\Rightarrow A\geq 2\sqrt{2}+2\)
Vậy $A_{\min}=2\sqrt{2}+2$. Dấu "=" xảy ra khi \(a=\pm \frac{1}{\sqrt[4]{2}}-1\)
bn đã thi casio huyện chưa
TP vừa bỏ cuộc thi này rùi, nghe xog ngồi nhà hận PDG