\(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

theo kết quả bấm máy " hàng giờ đồng hồ " của mình thì

bài 1 \(U_{2003}=2\)

còn bài 2 thì chịu

21 tháng 6 2017

Cậu có thể ghi qui trình bấm phím đc ko? Qui trình "hàng giờ đồng hồ" của cậu ấy! Hihi. Mà cho mìh kết bạn với nhé!

Bài 1: Cho dãy số (un) được xác định như sau: Un = n2 + (n+1)2  + (n+2)2 + (n + 3)2Với n =1,2 3,… Tìm tất cả các số hạng của dãy số chia hết cho 10.Bài 2: Cho dãy số được xác định bởi:  \(\hept{\begin{cases}A_0=0\\a_{n+1}=\frac{n\left(n+1\right)}{\left(n+2\right)\left(n+3\right)}\end{cases}.\left(a_n+1\right)}\) với n là số tự nhiên khác 0.a)     Tính an với n =1,2,3,4,5,6. (kết quả viết dưới dạng phân số)b)   ...
Đọc tiếp

Bài 1: Cho dãy số (un) được xác định như sau: Un = n2 + (n+1)+ (n+2)2 + (n + 3)2

Với n =1,2 3,… Tìm tất cả các số hạng của dãy số chia hết cho 10.

Bài 2: Cho dãy số được xác định bởi:  \(\hept{\begin{cases}A_0=0\\a_{n+1}=\frac{n\left(n+1\right)}{\left(n+2\right)\left(n+3\right)}\end{cases}.\left(a_n+1\right)}\)

 với n là số tự nhiên khác 0.

a)     Tính an với n =1,2,3,4,5,6. (kết quả viết dưới dạng phân số)

b)    Tính a2012 (Lấy kết quả đúng)

( Gợi ý: - Nhân cả tử và mẫu của a2 với cùng 1 số rồi tách tử và mẫu thành tích, tương tự với a3. Từ đó tìm CTTQ của an)

Bài 3:

Cho dãy số xác định bởi: \(\hept{\begin{cases}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2^{U_n}}\end{cases}}\)  Với n là số tự nhiên khác 0. Tính U2003.

Bài 4: Tính giá trị biểu thức A biết: \(A=\sqrt{2007+\sqrt{2007+...+\sqrt{2007}}}\)  (n dấu căn)

0
28 tháng 9 2017

Ta có:\(\left(\sqrt[]{x^2+2007}+x^{ }\right)\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}+y\right)\left(\sqrt{y^2+2007}-y\right)=2007\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)\)

\(\Rightarrow2007^2=2007\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)\)

\(\Rightarrow\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)=2007\)

\(\Rightarrow xy-x\sqrt{y^2+2007}-y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(1)

\(\left(\sqrt[]{x^2+2007}+x^{ }\right)\left(\sqrt{y^2+2007}+y\right)=xy+x\sqrt{y^2+2007}+y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(2)

cộng (1) và (2)

\(\Rightarrow xy+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)

\(\Leftrightarrow\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007-xy\)

\(\Rightarrow x^2y^2+2007\left(x^2+y^2\right)+2007^2=2007^2-2.2007xy+x^2y^2\)

\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow M=0\)

29 tháng 9 2017

thank you Bertram Đức Anh

28 tháng 7 2016

Bài 2:

\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{2005}}{-4}\)

\(=\frac{\sqrt{2005}-1}{4}\)