K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a:

góc DAB+góc CAE=180 độ-góc BAE=90 độ

góc DAB+góc DBA=90 độ

=>góc DBA=góc CAE

Xét ΔDBA vuông tại D và ΔEAC vuông tại E có

BA=AC
góc DBA=góc EAC

=>ΔDBA=ΔEAC

b: ΔDBA=ΔEAC

=>DB=EA và DA=EC

BD+CE

=CA+AD

=CD

16 tháng 3 2020

Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Tia đối của tia CB là Cx

K là giao điểm của BI và CE

Ta thấy \(\widehat{ECx}=\widehat{HAC}\)(cùng phụ với \(\widehat{ACH}\))

\(\Rightarrow\widehat{IAC}=\widehat{BCE}\)(cùng kề bù với hai góc bằng nhau)

Xét \(\Delta IAC\)và \(\Delta BCE\)có:

     AI = CB (theo cách chọn điểm phụ)

    \(\widehat{IAC}=\widehat{BCE}\left(cmt\right)\)

    AC = CE (gt)

Do đó \(\Delta IAC=\Delta BCE\left(c-g-c\right)\)

\(\Rightarrow\widehat{ICA}=\widehat{BEC}\)(hai góc tương ứng)

Mà \(\widehat{ICA}+\widehat{ICE}=90^0\left(=\widehat{ACE}\right)\)nên \(\widehat{BEC}+\widehat{ICE}=90^0\)

\(\Rightarrow\Delta CKE\)vuông tại K\(\Rightarrow\widehat{CKE}=90^0\Rightarrow BE\perp IC\)

Tương tự ta có \(CD\perp BI\)

\(\Rightarrow IH,CD,BE\)đồng quy (ba đường cao trong \(\Delta IBC\))

Mà \(IH\equiv AH\Rightarrow AH,CD,BE\)đồng quy

Vậy \(AH,CD,BE\)đồng quy (đpcm)

25 tháng 4 2019

Tự vẽ hình

Xét tam giác BDC và tam giác CEB có :

\(\widehat{B}=\widehat{C}\)( t/c của tia phân giác )

BC cạnh chung

\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )

=> tam giác BDC = tam giác CEB ( g.c.g )

=> BD = CE ( 2 cạnh tương ứng )

b) Xét tam giác BEI và tam giác CDI có :

\(\widehat{I_1}=\widehat{I_3}\)( 2 góc đối đỉnh )

BD = CE ( cmt)

\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )

=> tam giác BEI và tam giác CDI  ( g.c.g )

=> BI = IC ( 2 cạnh tương ứng )

=> tam giác BIC cân ở I ( đpcm )

25 tháng 4 2019

Xét \(\Delta BDC\) và \(\Delta CEB\) có :

\(\widehat{B}=\widehat{C}\)(tính chất của tia phân giác)

BC chung

\(\widehat{E}=\widehat{D}=90^o\)

\(\Rightarrow\Delta BDC=\Delta CEB\left(g-c-g\right)\)

=> BD = CE ( 2 cạnh tương ứng )

b.  Xét \(\Delta BEI\) và \(\Delta CDI\) có :

\(\widehat{I_1}=\widehat{I_3}\)(2 góc đối đỉnh)

BD = CE(câu a)

\(\widehat{E}=\widehat{D}=90^o\)

=> \(\Delta BEI=\Delta CDI\left(g.c.g\right)\)  

=> BI = IC ( 2 cạnh tương ứng )

=> tam giác BIC cân ở I ( đpcm )

2 tháng 5 2016

Bạn tự vẽ hình nhé. Mình giải thôi.

1)Bạn chia 2 TH.

a) Góc MDB lớn hơn hoac bằng 60 độ

=>MD<MB mà ME>MC=MB

=>MD<ME.

b) Góc MDB nhỏ hơn 60 độ.

=> MD giao CA tại E .

Dễ dàng cminh DM<ME.

2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC

=> AI trung trực BC. Mà AO là trung trục BC.

=> AI trùng AO.

=>OI là trung trực BC

Đè bài cần xem lại nhé.

3)Ta có góc B > góc C => AC>AB

Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE

Tương tự AB>BD

Tất cả các điều => AC-AB>CE-BD

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0