Bài 1: cho đa thức : M(x) = 5x^3 + 2x^4 - x^2 + 3x^2 - x^3 -...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

\(M\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)

\(=x^4+2x^2+1=\left(x^2+1\right)^2\)

Để đa thức trên có nghiệm khi \(\left(x^2+1\right) ^2=0\Leftrightarrow x^2+1=0\)( vô lí )

Vậy ta có đpcm

13 tháng 7 2021

Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3

M(x) = (2x4 - x4) + (5x3 - x3  - 4x3) + (-x2 + 3x2) + 1

M(x) = x4 + 2x2 + 1

a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4

M(-1) = (-1)4 + 2.(-1)2 + 1 = 4

b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0

=> x4  + 2x2 + 1 > 0

=> M(x) > 0

=> M(x) ko có nghiệm

26 tháng 7 2019

\(M\left(x\right)=5x^3+2x^4-x^3+3x^2-x^3-x^4+1-4x^3\)

\(M\left(x\right)=x^4+2x^2+1\)

Dễ thấy: \(\hept{\begin{cases}x^4\ge0\\2x^2\ge0\end{cases}}\Rightarrow x^4+2x^2\ge0\)

\(M\left(x\right)=x^4+2x^2+1\ge1\)

=> đa thức M(x) vô nghiệm

26 tháng 7 2019

Lê Trung HiếuKo bt rút gọn à

\(M\left(x\right)=x^4-x^3+3x^2+1\)

22 tháng 3 2020

        Trả lời:

a) Sắp xếp các hạng tử của đa thức theo lũy thừa giảm của biến:

    M(x)= 2x4 -x4 +5x3 -4x3 -x3 +3x2 -x2 +1

b) 

     +) Tính M(1):

     M(1)= 2.14 -14 +5.13 -4.13 -13 +3.12 -12 +1

             = 2.1 -1 +5.1 -4.1 -1 +3.1 -1 +1

             = 2 -1 +5 -4 -1 +3 -1 +1

             = 4

     +) Tính M(-1):

     M(-1)= 2.(-1)4 -(-1)4 +5.(-1)3 -4.(-1)3 -(-1)3 3.(-1)2 -(-1)2 +1

              = 2.1 -1 +5.(-1) -4.(-1) +1 +3.1 -1 +1

              = 2 -1 -5 -4 +1 +3 -1 +1

              = -4

c) Đa thức M(x) không có nghiệm vì tại x=a bất kì, ta luôn có M(x) >= 4(-4) >0

                                                        Các bạn nhớ (k) đúng cho mình nha !

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

10 tháng 6 2020

a, tự làm

b, 4x3 -x

Ta có:x(4x2-1)=0

=>x=0 hoặc 4x2-1=0

=>x=0 hoặc 4x2=1

=>x=0 hoặc \(x^2=\frac{1}{4}\)

=>x=0 hoặc \(x=\sqrt{\frac{1}{4}}\)

=>x=0 hoặc \(x=\frac{1}{2}\)

Vậy đa thức có 2 nghiệm là x= 0 và \(x=\frac{1}{2}\)

10 tháng 6 2020

a) P(x) + Q(x) = x4 - 3x3 + x2 + 5x + 2 + 3x3 + 5x + 4

                       = x4 + ( 3x3 - 3x3 ) + x2 + ( 5x + 5x ) + ( 4 + 2 )

                       = x4 + x2 + 10x + 6

P(x) - Q(x) = ( x4 - 3x3 + x2 + 5x + 2 ) - ( 3x3 + 5x + 4 ) 

                  = x4 - 3x3 + x2 + 5x + 2 - 3x3 - 5x - 4

                  = x4 + ( -3x3 - 3x3 ) + x2 + ( 5x - 5x ) + ( 2 - 4 )

                  = x4 - 6x3 + x2 - 2

b) H(x) = 4x3 - x 

H(x) = 0 <=> 4x3 - x = 0

             <=> x(4x2 - 1 ) = 0

             <=> x = 0 hoặc 4x2 - 1 = 0

* 4x2 - 1 = 0

4x2 = 1

x2 = 1/4

x = \(\pm\sqrt{\frac{1}{2}}\)

Vậy nghiệm của đa thức là 0 và \(\pm\sqrt{\frac{1}{2}}\)

6 tháng 7 2021

Sửa lại:... :v

Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1

= (3x3 - 4x3) + (5x2 - 4x2) + (3x - 4x) + 1

= -x3 + x2 - x + 1

=> M(x) = 2x2 + 3

N(x) = 2x3 + 2x + 1

Câu c chỉ cần thay số 5 thành số 3 là được nhé!

6 tháng 7 2021

a. P(x) = 2x3 - 2x + x2 - x3 + 3x + 2

= (2x3 - x3) + x2 + (3x - 2x) + 2

= x3 + x2 + x + 2

Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1

= (3x3 - 4x3) + (5x2 - 4x2) + (3x - 4x) + 1

= -x3 + x2 - x + 3

b. M(x) = P(x) + Q(x)

= x3 + x2 + x + 2 - x3 + x2 - x + 3

= (x3 - x3) + (x2 + x2) + (x - x) + (2 + 3)

= 2x2 + 5

N(x) = P(x) - Q(x)

= x3 + x2 + x + 2 - (- x3 + x2 - x + 3)

= x3 + x2 + x + 2 + x3 - x2 + x - 3

= (x3 + x3) + (x2 - x2) + (x + x) + (2 - 3)

= 2x3 + 2x - 1

c. Ta có: 2x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 2x2 + 5 > 0

\(\Rightarrow\) Đa thức M(x) vô nghiệm   (đpcm)

1 tháng 4 2019

\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)

\(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)

=\(4x+\frac{16}{3}\)

2 tháng 4 2019

sao làm csw mỗi câu z bạn

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15